Service Manual # **Tektronix** 1503C Metallic Time-Domain Reflectometer 070-7170-05 This document applies to firmware version 5.04 and above. #### Warning The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service. www.tektronix.com Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved. Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077 TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. #### WARRANTY Tektronix warrants that the products that it manufactures and sells will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If a product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations. This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product. THIS WARRANTY IS GIVEN BY TEKTRONIX IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. # **Table of Contents** | | General Safety Summary | xiii
xv | |----------------------|---|--| | | General Information Installation and Repacking Contacting Tektronix | xvi i
xviii
xiv | | Operating Instructio | ns | | | | Operating Instructions Overview Preparing to Use the 1503C Display Front-Panel Controls Menu Selections Test Preparations Cable Test Procedure Additional Features (Menu Selected) | 1-1
1-1
1-5
1-6
1-6
1-8
1-11
1-13
1-25 | | Operator Performan | ce Checks | | | | Operator Performance Checks | 2–1 | | Specifications | | | | | Specifications Electrical Characteristics Environmental Characteristics Physical Characteristics | 3–1 3–1 3–3 3–4 | | Options and Access | ories | | | | Options and Accessories Option 04: YT-1 Chart Recorder Option 05: Metric Default Option 06: Ethernet® Option 07: YT-1S Chart Recorder Option 08: Token Ring Adapter Option 09: Universal Service Ordering Code Option 10: Token Ring Interface Power Cord Options Accessories | 4–1 4–1 4–1 4–16 4–17 4–17 4–17 4–18 4–19 | ## **Circuit Descriptions** | | Circuit Descriptions | |-------------------|--| | | Introduction | | | Power Supply | | | Processor System | | | Option Port Interface | | | Video Processor 5 | | | Timebase5 | | | Pulse Generator/Sampler | | | Front Panel | | | Display Module | | | Option 06 (Ethernet®) | | | option of (Zanotnets) | | Calibration and A | Adjustments | | | Calibration | | | Introduction | | | | | | Calibration Performance Check | | | Display Module Check | | | Front Panel Check | | | Horizontal Scale (Timebase) Check | | | Vertical Position (Offset) Check | | | Noise Check 6 | | | Impedance Check | | | Offset/Gain Check | | | RAM/ROM Check | | | Pulse Balance Check 6 | | | Pulse Width Check 6 | | | Auto Pulse Select Check | | | Jitter Check 6 | | | Aberrations Check | | | Pulse Amplitude Check | | | Option 04/07: YT-1/YT-1S Chart Recorder Check | | | Option 05: Metric Default Check | | | Option 06: Ethernet® Adapter Checks | | | Adjustment Procedures 6 | | | Visual Inspection 6 | | | Power Supply Checks and Adjustments | | | Main Board ± 12 VDC Check and Adjust | | | LCD Check and Adjustment6 | | | Pulser/Sampler Voltage Check | | | Sampling Efficiency Adjustment | | | 1st Blow-By Compensation Adjustment | | | Output Impedance Check | | | Option 06: Ethernet® Adapter Adjustments | | | After Adjustments are Completed | | | egines is the control of the process of the control | ## Maintenance | | N. C. S. A. | 7 1 | |-----------------------|---|-------------------| | | Maintenance | 7–1
7–1 | | | Preventive Maintenance | 7–1 | | | Part Removal and Replacement | 7–2 | | | Troubleshooting | 7–13 | | | Control Panel Installation | 7–18
7–19 | | Replaceable Electrica | al Parts | | | • | Danlagashla Elastwical Powts | 8–1 | | | Replaceable Electrical Parts | 0-1 | | Diagrams | | | | | Diagrams | 9–1 | | Replaceable Mechani | cal Parts | | | | Replaceable Mechanical Parts | 10–1 | | Glossary | | | | Index | | | | IIIUCX | | | iii # **List of Figures** | Figure 1–1: | Rear Panel Voltage Selector, Fuse, AC Receptacle | 1- | |--------------|---|----| | Figure 1–2: | Display Showing Low Battery Indication | 1- | | Figure 1–3: | 1503C Front-Panel Controls | 1- | | Figure 1–4: | Display and Indicators | 1- | | Figure 1–5: | Vp Set at .30, Cursor Beyond Reflected Pulse (Setting Too Low) | 1- | | Figure 1–6: | Vp Set at .99, Cursor Less Than Reflected Pulse (Setting Too High) | 1- | | Figure 1–7: | Vp Set at .66, Cursor on Rising Edge of Reflected Pulse (Set Correctly) | 1- | | Figure 1–8: | 20-ft Cable at 5 ft/div | 1– | | Figure 1–9: | Short in the Cable | 1– | | Figure 1–10: | Open in the Cable | 1– | | Figure 1–11: | 455-ft Cable | 1– | | Figure 1–12: | 455-ft Cable with 20 ft/div, Cursor Off Screen | 1- | | Figure 1–13: | Return Loss | 1– | | Figure 1–14: | Reflection Adjusted to One Division in Height | 1- | | Figure 1–15: | Display with VIEW INPUT Turned Off | 1- | | Figure 1–16: | Display of a Stored Waveform | 1- | | Figure 1–17: | Display of a Stored Waveform and Current Waveform . | 1– | | Figure 1–18: | Display of a Stored Waveform, Current Waveform, and Difference Waveform | 1- | | Figure 1–19: | Waveform Moved to Top Half of Display | 1– | | Figure 1–20: | Current Waveform Centered, Stored
Waveform Above | 1- | | Figure 1–21: | Current Waveform Center, Stored Waveform Above, Difference Below | 1– | | Figure 1–22: | Waveform of Three-Foot Lead-in Cable | 1– | | Figure 1–23: | Cursor Moved to End of Three-Foot Lead-in Cable | 1- | | Figure 1–24: | Cursor Moved to End of Three-Foot Lead-in Cable | 1- | | Figure 1–25: | Cursor Moved to 0.00 ft | 1- | | Figure 1–26: | Incident Pulse at Four Divisions, FILTER at Desired Setting | 1– | | Figure 1–27: | Waveform Viewed in Normal Operation | 1- | | Figure 1–28: | Waveform Showing Intermittent Short | 1- | | Figure 1–29 | Waveform Display with No Outgoing Pulses | 1_ | | Figure 1–30: | A Captured Single Sweep | 1–27 | |--------------|--|------| | Figure 2–1: | Start-up Measurement Display | 2–2 | | Figure 2–2: | Measurement Display with 10-foot Cable | 2-2 | | Figure 2–3: | Cursor at End of 10-foot Cable | 2-3 | | Figure 2–4: | Cursor at End of 10-foot Cable, Vp Set to .30 | 2-3 | | Figure 2–5: | Flatline Display Out to 50,000+ Feet | 2–4 | | Figure 2–6: | Waveform Off the Top of the Display | 2–4 | | Figure 2–7: | Waveform at the Bottom of the Display | 2-5 | | Figure 2–8: | Waveform with Gain at 57 dB | 2-5 | | Figure 2–9: | Distance at –2.00 ft | 2-7 | | Figure 2–10: | Pulse Adjusted to Four Major Divisions in Height | 2-7 | | Figure 2–11: | Waveform Centered, Cursor at 10.00 ft | 2-8 | | Figure 2–12: | Pulse Adjusted to Four Major Divisions in Height | 2-8 | | Figure 2–13: | Aberrations Less Than Four Divisions Out to | | | | 30.00 ft | 2–9 | | Figure 2–14: | Pulse Adjusted to Four Major Divisions in Height | 2–9 | | Figure 2–15: | Aberrations Less Than Four Divisions Out to | | | | 300.00 ft | 2–10 | | Figure 2–16: | Pulse Adjusted to Four Major Divisions in Height | 2–10 | | Figure 2–17: | Aberrations Less Than Four Divisions Out to 3000.00 ft | 2–11 | | Figure 4–1: | A Typical Ethernet System | 4–2 | | Figure 4–2: | N-Type Male T-Connector | 4–5 | | Figure 4–3: | N-Type Female T-Connector | 4–5 | | Figure 4–4: | System 1 – Tap Hidden by Traffic (1 avg, 50 ft/div. 35 dB) | 4–10 | | Figure 4–5: | System 1 – Traffic and Tap Nearly Identical | | | | (4 avg, 50 ft/div, 35 dB) | 4–10 | | Figure 4–6: | System 1 – Tap Becoming Visible (16 avg, 50 ft/div, 35 dB) | 4–11 | | Figure 4–7: | System 1 – Tap Quite Visible (128 avg, 50 ft/div, 35 dB) | 4–11 | | Figure 4–8: | System 1 – No Traffic (1 avg, 50 ft/div, 35 dB) | 4–11 | | Figure 4–9: | System 1 – Tap Expanded, No Traffic (1 avg, 2 ft/div, 35 dB) | 4–12 | | Figure 4–10: | System 2 – Cable w/ Revision One Repeater (1 avg, 200ft/div, 2.25dB) | 4–12 | | Figure 4–11: | System 2 – First Tap, No Traffic (1 avg, 1 ft/div, 44.5 dB) | 4–12 | |--------------|--|------| | Figure 4–12: | System 2 – Same Tap with 5% Traffic (1 avg, 1 ft/div, 44.5 dB) | 4–13 | | Figure 4–13: | System 2 – Same Tap, Increased Averaging (16 avg, 1 ft/div, 44.5 dB) | 4–13 | | Figure 4–14: | System 2 – Farther Out, More Gain (128 avg, 10 ft/div, 53.5 dB) | 4–13 | | Figure 4–15: | System 2 – 1000-ft Cable at 10 ns
(128 avg, 100 ft/div, 43.75 dB) | 4–14 | | Figure 4–16: | System 2 – Previous Waveform Expanded (128 avg, 20 ft/div, 54.75 dB) | 4–14 | | Figure 4–17: | System 2 – Next Group of Taps (128 avg, 20 ft/div, 54.75 dB) | 4–14 | | Figure 4–18: | System 2 – Group of Taps Expanded (128 avg, 10 ft/div, 54.75 dB) | 4–15 | | Figure 4–19: | System 2 – Another Group of Taps (128 avg, 10 ft/div, 54.75 dB) | 4–15 | | Figure 4–20: | System 2 – End of Cable (128 avg, 20 ft/div, 61.25 dB) | 4–15 | | Figure 4–21: | Typical Frequency Response Curve with Ethernet® Option 06 | 4–16 | | Figure 5–1: | System Block Diagram | 5–2 | | Figure 5–2: | Waveform Accumulation Diagram | 5–3 | | Figure 5–3: | Power Supply Block Diagram | 5–4 | | Figure 5–4: | Processor Block Diagram | 5-8 | | Figure 5–5: | Option Port Interface Block Diagram | 5-11 | | Figure 5–6: | Video Processor Block Diagram | 5-13 | | Figure 5–7: | Video Processor Output | 5-15 | | Figure 5–8: | Timebase Block Diagram | 5–16 | | Figure 5–9: | Timebase Control | 5-17 | | Figure 5–10: | Combined Effects of Time Delay | 5-18 | | Figure 5–11: | Calibration of Delay Zero and 50-ns Analog Delay | 5–19 | | Figure 5–12: | Pulse Generator/Sampler Block Diagram | 5-23 | | Figure 5–13: | Front Panel Block Diagram | 5-26 | | Figure 5–14: | Display Module Block Diagram | 5-29 | | Figure 5–15: | SBE Cell | 5-31 | | Figure 5–16: | Row Driver Block Diagram | 5-31 | | Figure 5–17: | Column Driver Block Diagram | 5-32 | | Figure 5–18: | Row Timing Diagram | 5-33 | | Figure 5–19: | Column Timing Diagram | 5-35 | |---------------------------|---|------| | Figure 5–20: | Shift Register | 5–36 | | Figure 5–21: | CPU and Display Memory Interface | 5–39 | | Figure 5–22: | Option 06 (Ethernet®) Block Diagram | 5–41 | | Figure 6–1: | Typical Start-Up Display | 6–2 | | Figure 6–2: | Waveform on the Display | 6–2 | | Figure 6–3: | Setup Menu | 6–3 | | Figure 6–4: | Main Menu | 6–4 | | Figure 6–5: | Diagnostics Menu | 6–5 | | Figure 6–6: | Front Panel Diagnostic Display | 6–5 | | Figure 6–7: | Front Panel Diagnostic Display | 6–6 | | Figure 6–8: | Front Panel Diagnostic Display | 6–7 | | Figure 6–9: | Front Panel Diagnostic Display | 6–7 | | Figure 6–10: | Waveform on the Display with No Cable Attached | 6–8 | | Figure 6–11: | Waveform on the Display with 10-ft Cable Attached | 6–8 | | Figure 6–12: | Cursor on Rising Edge of Reflected Pulse at 5 ft/div | 6–9 | | Figure 6–13: | Cursor on Rising Edge of Reflected Pulse at 1 ft/div | 6–9 | | Figure 6–14: | Cursor on Rising Edge of Reflected Pulse with Vp at .84 | 6–9 | | Figure 6–15: | Flatline Display to >50,000 ft | 6–10 | | Figure 6–16: | Waveform at Top of the Display | 6–11 | | Figure 6–17: | Waveform at Bottom of the Display | 6–11 | | Figure 6–18: | Waveform at Center of the Display | 6–11 | | Figure 6–19: | Distance Moved Beyond Trailing Edge of Pulse | 6–12 | | Figure 6–20: | Noise with Gain at 57 dB | 6–13 | | Figure 6–21: | Noise Diagnostic Display | 6–13 | | Figure 6–22: | Service Diagnostic Menu | 6–14 | | Figure 6–23: | Service Diagnostic Menu | 6–14 | | Figure 6–24: | Service Diagnostic Menu | 6–15 | | Figure 6–25: | Pulse Appx. Five Divisions High | 6–16 | | Figure 6–26: | Current Waveform Shifted from Stored Waveform | 6–17 | | Figure 6–27: | Initial Pulse | 6–18 | | Figure 6–28: | Pulse Adjusted to Six Divisions High | 6–18 | | Figure 6–29: | Cursor on Leading Edge at Center Graticule | 6–19 | | Figure 6–29. Figure 6–30: | Cursor on Trailing Edge at Center Graticule | 6–19 | | Figure 6–30. | Initial Pulse with Cursor at 0.00 ft | 6–20 | | Figure 6–31. | Waveform on Auto Pulse Select | 6–21 | | Figure 6–32. | Initial Pulse Centered on Horizontal Graticule | 6-21 | | | TOTAL CONTROL A ARTERIAL OF THURSTONIAL CHARLES | 0-/- | | Figure 6–34: | Gain Increased to 30.00 dB | 6–22 | |--------------|--|------| | Figure 6–35: | Jitter Apparent Using Max Hold | 6–22 | | Figure 6–36: | Cursor at –2.00 ft | 6–23 | | Figure 6–37: | Pulse Height at Four Divisions at 1 ft/div | 6–24 | | Figure 6–38: | Gain Increased to 25.00 dB | 6–24 | | Figure 6–39: | Pulse Height at Four Divisions at 2 ft/div | 6–25 | | Figure 6–40: | Gain Increased to 30.00 dB | 6–25 | | Figure 6–41: | Pulse Height at Four Divisions at 50 ft/div | 6–26 | | Figure 6–42: | Gain Increased to 30.00 dB | 6–26 | | Figure 6–43: | Pulse Height at Four Divisions at 500 ft/div | 6–27 | | Figure 6–44: | Gain Increased to 30.00 dB | 6–27 | | Figure 6–45: | Oscilloscope Waveform | 6–28 | | Figure 6–46: | 1503C Waveform of 1000-ns Pulse | 6–29 | | Figure 6–47: | 1503C Waveform of 100-ns Pulse | 6–29 | | Figure 6–48: | 1503C Waveform of 2-ns Pulse | 6-30 | | Figure 6–49: | Head Alignment Chart Print | 6-30 | | Figure 6–50: | Equipment Setup | 6–32 | | Figure 6–51: | Main Menu | 6–32 | | Figure 6–52: | Ethernet Menu | 6–33 | | Figure 6–53: | Ethernet Menu | 6–33 | | Figure 6–54: | Ethernet Menu | 6–34 | | Figure 6–55: | Ethernet Menu | 6–34 | | Figure 6–56: | Ethernet Menu | 6–35 | | Figure 6–57: | Circuit Board Locations in the Instrument | 6–37 | | Figure 6–58: | Power Supply Board | 6–39 | | Figure 6–59: | Power Supply Test Points TP1020 and TP1010 | 6–39 | | Figure 6–60: | Power Supply Test Point TP2030 | 6-40 | | Figure 6–61: | Connector Plug P5040 and Pins J5040 on Bottom of | | | | Main Board | 6–40 | | Figure 6–62: | Power Supply Test Point TP1020 | 6–41 | | Figure 6–63: | Power Supply Test Point TP2030 | 6–41 | | Figure 6–64: | Location of Main Board in Instrument | 6–42 | | Figure 6–65: | Main Board Probe Points | 6–42 | | Figure 6–66: | Waveform on Display | 6–43 | | Figure 6–67: | Battery Connections to Power Supply Board | 6–44 | | Figure 6–68: | CR2012 on Power Supply Board | 6–44 | | Figure 6–69: | Display Showing Power is Battery | 6–45 | | Figure 6–70: | Display Showing Battery Voltage is Low | 6–45 | | Figure 6–71: | R2012 on Power Supply Board | 6–46 | | Figure 6–72: | R1018 on Front Panel Board | 6–47 | |--------------|---|------| | Figure 6–73: | LCD Pattern with Contrast Too Light | 6–47 | | Figure 6–74: | LCD Pattern with Contrast Too Dark | 6–47 | | Figure 6–75: | LCD Pattern Adjusted for Sharpness | 6–48 | | Figure 6–76: | Waveform with Contrast Too Light | 6–48 | | Figure 6–77: | Waveform with Contrast Adjusted Correctly | 6–49 | | Figure 6–78: | Location of Pulser/Sampler Board in Instrument | 6-50 | | Figure 6–79: | TP1081 and TP1082 on Pulser/Sampler Board | 6-50 | | Figure 6–80: | VR3020 and VR30212 on Pulser/Sampler Board | 6-50 | | Figure 6–81: | Service Diagnostic Menu | 6-52 | | Figure 6–82: | Location of Pulser/Sampler Board in Instrument | 6-52 | | Figure 6–83: | Location of R1080 on
Pulser/Sampler Board | 6–53 | | Figure 6–84: | Service Diagnostic Efficiency Readout | 6–53 | | Figure 6–85: | Location of Pulser/Sampler Board in Instrument | 6–54 | | Figure 6–86: | Location of R2097 on Pulser/Sampler Board | 6–55 | | Figure 6–87: | Over-Compensated | 6–55 | | Figure 6–88: | Under-Compensated | 6–55 | | Figure 6–89: | Correctly Compensated | 6–56 | | Figure 6–90: | Location of Pulser/Sampler Board in Instrument | 6–56 | | Figure 6–91: | Location of C3010, TP3020, and TP3030 on Pulser/Sampler Board | 6–57 | | Figure 6–92: | Main Menu | 6–57 | | Figure 6–93: | L2010, R1011, and R1013 on Option 06 Board | 6–58 | | Figure 7–1: | Location of Voltage Selector, Fuse Holder on Rear Panel | 7–2 | | Figure 7–2: | Power Supply Module and P/O Rear Panel | 7–4 | | Figure 7–3: | Main Board | 7–7 | | Figure 7–4: | EPROM on Main Board | 7–7 | | Figure 7–5: | Lithium Battery on Main Board | 7–8 | | Figure 7–6: | Display Module/Front Panel Board Screw Locations | 7–10 | | Figure 7–7: | Display Module/Front Panel Board Showing Hex Nuts . | 7–11 | | Figure 7–8: | Location of Default Jumper on Front Panel Board | 7–12 | | Figure 7–9: | Default Jumper Positions | 7–12 | | Figure 7–10: | Main Board TP1041 | 7–13 | | Figure 7–11: | Main Board TP3040 and Main Board TP3041 | 7–17 | | Figure 7–12: | Main Board TP4040 and Main Board TP6010 | 7–17 | | Figure 7–13: | Main Board TP7010 and Main Board TP9011 | 7–17 | | Figure 7–14: | Main Board TP9041 and Front Panel CABLE | | | | Commonton | 7 10 | | Figure 7–15: | Installing the Case Cover Over the Chassis | 7–20 | |--------------|--|-------| | Figure 9–1: | Special Schematic Symbols | 9–3 | | Figure 9–2: | Component Locator – Main Board | 9–15 | | | Schematics – Main Board | 9–16 | | Figure 9–3: | Component Locator – Front Panel Board | 9–25 | | | Schematics – Front Panel | 9–26 | | Figure 9–4: | Component Locator – Power Supply Board | 9–28 | | | Schematics – Power Supply | 9–29 | | Figure 9–5: | Component Locator – Pulser/Sampler Board | 9-31 | | | Schematics – Pulser/Sampler | 9-32 | | Figure 9–6: | Component Locator – EthernetBoard | 9–34 | | | Schematics – Ethernet Board | 9–35 | | Figure 10–1: | Cabinet | 10–13 | | Figure 10–2: | Frame, Assemblies and Front Panel Controls | 10–15 | | Figure 10–3: | Option 06 Ethernet® | 10–17 | | Figure 10–4: | Power Supply | 10–19 | # **List of Tables** | Shipping Carton Test Strength | xvii | |---|------| | Fuse / Voltage Ratings | 1–2 | | Vp of Various Dielectric Types | 1-11 | | Impedance of Various Cable Types | 1-12 | | Cable Length / Suggested Pulse / Suggested ft/div | 1–14 | | Operator Performance Checks – Equipment Required | 2–1 | | Specifications: Electrical Characteristics | 3–1 | | Specifications: Environmental Characteristics | 3–3 | | Specifications: Physical Characteristics | 3–4 | | Option 06 Ethernet: Electrical Characteristics | 4–16 | | Option Port Wiring Configuration | 5–12 | | Row Driver Latch Bits | 5–34 | | Column Driver Latch Bits | 5–36 | | Controller Periods | 5-37 | | Option 06 Ethernet Control Lines | 5–41 | | Calibration Performance Check – Equipment Required | 6–1 | | Pulse Widths with Allowable Tolerances | 6–19 | | Auto Pulse: Distance per Division and Pulse Width | 6–20 | | Option 06 Ethernet® Checks – Equipment Required | 6–31 | | Adjustment Procedures – Equipment Required | 6–37 | | Main Board Voltages, Tolerances, Test Point Locations | 6–40 | | Pulser/Sampler Voltages and Test Point Locations | 6-51 | | Impedance Range and Specification | 6–58 | | Maintenance – Equipment Required | 7–1 | | Power Cord Conductor Color Code | 7–6 | | Sooling Motorials | 7 10 | # **General Safety Summary** Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use this product only as specified. Only qualified personnel should perform service procedures. ### To Avoid Fire or Personal Injury **Use Proper Power Cord.** Use only the power cord specified for this product and certified for the country of use. **Use Proper Voltage Setting.** Before applying power, ensure that the line selector is in the proper position for the power source being used. #### **Power Source** This product is intended to operate from a power source that will not apply more than 250 volts RMS between the supply conductors or between the supply conductor and ground. A protective ground connection, by way of the grounding conductor in the power cord, is essential for safe operation. **Ground the Product.** This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded. The standard power cord (161-0288-00) is rated for outdoor use. *All other optional power cords are rated for indoor use only.* **Observe All Terminal Ratings.** To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product. Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal. **Replace Batteries Properly.** Replace batteries only with the proper type and rating specified. **Recharge Batteries Properly.** Recharge batteries for the recommended charge cycle only. **Use Proper AC Adapter.** Use only the AC adapter specified for this product. **Do Not Operate Without Covers.** Do not operate this product with covers or panels removed. **Use Proper Fuse.** Use only the fuse type and rating specified for this product. **Avoid Exposed Circuitry.** Do not touch exposed connections and components when power is present. **Do Not Operate With Suspected Failures.** If you suspect there is damage to this product, have it inspected by qualified service personnel. Do Not Operate in an Explosive Atmosphere. ### Symbols and Terms **Terms in this Manual.** These terms may appear in this manual: **WARNING.** Warning statements identify conditions or practices that could result in injury or loss of life. **CAUTION**. Caution statements identify conditions or practices that could result in damage to this product or other property. **Terms on the Product.** These terms may appear on the product: DANGER indicates an injury hazard immediately accessible as you read the marking. WARNING indicates an injury hazard not immediately accessible as you read the marking. CAUTION indicates a hazard to property including the product. **Symbols on the Product.** The following symbols may appear on the product: CAUTION Refer to Manual WARNING High Voltage Double Insulated Protective Ground # **Service Safety Summary** Only qualified personnel should perform service procedures. Read this *Service Safety Summary* and the *General Safety Summary* before performing any service procedures. Do Not Service Alone Do not perform internal service or adjustments of this product unless another person capable of rendering first aid and resuscitation is present. **Disconnect Power** To avoid electric shock, disconnect the main power by means of the power cord or the power switch. Use Care When Servicing With Power On Dangerous voltages or currents may exist in this product. Disconnect power, remove battery, and disconnect test leads before removing protective panels, soldering, or replacing components. To avoid electric shock, do not touch exposed connections. **Disposal of Batteries** This instrument contains a lead-acid battery. Some states and/or local jurisdictions might require special disposition/recycling of this type of material in accordance with Hazardous Waste guidelines. Check your local and state regulations prior to disposing of an old battery. Tektronix Factory Service will accept 1503C batteries for recycling. If you choose to return the battery to us for recycling, the battery cases must be intact, the battery should be packed with the battery terminals insulated against possible short-circuits, and should be packed in shock-absorbant material. Tektronix, Inc. Attn: Service Department P.O. Box 500 Beaverton, Oregon 97077 U.S.A. For more information, call 1-800-833-9200. ## **General Information** #### **Product Description** The Tektronix 1503C Metallic-cable Time-Domain Reflectometer (MTDR) is a cable test instrument that uses radar principles to determine the electrical characteristics of metallic cables. The 1503C generates a half-sine wave signal, applies it to the cable under test, and detects and processes the reflected voltage waveform. These reflections are displayed in the 1503C liquid crystal display (LCD), where distance measurements may be made using a cursor technique. Impedance information may be obtained through interpreting waveform amplitude. The waveform may be temporarily stored within the 1503C and recalled or may be printed using the optional dot matrix strip chart recorder, which installs into the front-panel Option Port. ### **Battery Operation** The 1503C may be operated from an AC power source or an internal lead-gel battery, which supplies a minimum of eight hours operating time (see the *Specifications* chapter for specifics). #### **Options** Options available for the 1503C are explained in the *Options and Accessories* chapter of this manual. # Standards, Documents, and References Used Terminology used in this manual is in accordance with industry practice. Abbreviations are in accordance with ANSI Y1.1–19722, with exceptions and additions explained in parentheses in the text. Graphic symbology is based on ANSI Y32.2–1975. Logic symbology is based on ANSI Y32.14–1973 and manufacturer's data books or sheets. A copy of ANSI standards may be obtained from the Institute of Electrical and
Electronic Engineers, 345 47th Street, New York, NY 10017. # Changes and History Information Changes that involve manual corrections and/or additional data will be incorporated into the text and that page will show a revision date on the inside bottom edge. History information is included in any diagrams in gray. ## **Installation and Repacking** # Unpacking and Initial Inspection Before unpacking the 1503C from its shipping container or carton, inspect for signs of external damage. If the carton is damaged, notify the carrier. The shipping carton contains the basic instrument and its standard accessories. Refer to the replaceable parts list in the Service Manual for a complete listing. If the contents of the shipping container are incomplete, if there is mechanical damage or defect, or if the instrument does not meet operational check requirements, contact your local Tektronix Field Office or representative. If the shipping container is damaged, notify the carrier as well as Tektronix. The instrument was inspected both mechanically and electrically before shipment. It should be free if mechanical damage and meet or exceed all electrical specifications. Procedures to check operational performance are in the Performance Checks appendix. These checks should satisfy the requirements for most receiving or incoming inspections. # Power Source and Power Requirements The 1503C is intended to be operated from a power source that will not apply more than 250 volts RMS between the supply conductors or between either supply conductor and ground. A protective ground connection, by way of the grounding conductor in the power cord, is essential for safe operation. The AC power connector is a three-way polarized plug with the ground (earth) lead connected directly to the instrument frame to provide electrical shock protection. If the unit is connected to any other power source, the unit frame must be connected to earth ground. Power and voltage requirements are printed on the back panel. The 1503C can be operated from either 115 VAC or 230 VAC nominal line voltage at 45 Hz to 440 Hz, or a 12 VDC supply, or an internal battery. Further information on the 1503C power requirements can be found in the Safety Summary in this section and in the Operating Instructions chapter. ### Repacking for Shipment When the 1503C is to be shipped to a Tektronix Service Center for service or repair, attach a tag showing the name and address of the owner, name of the individual at your firm who may be contacted, the complete serial number of the instrument, and a description of the service required. If the original packaging is unfit for use or is not available, repackage the instrument as follows: 1. Obtain a carton of corrugated cardboard having inside dimensions that are at least six inches greater than the equipment dimensions to allow for cushioning. The test strength of the shipping carton should be 275 pounds (102.5 kg). Refer to the following table for test strength requirements: #### SHIPPING CARTON TEST STRENGTH | Gross Weight (lb) | Carton Test Strength (lb) | | |-------------------|---------------------------|--| | 0 – 10 | 200 | | | 11 – 30 | 275 | | | 31 – 120 | 375 | | | 121 – 140 | 500 | | | 141 – 160 | 600 | | **CAUTION.** The battery should be removed from the instrument before shipping. If it is necessary to ship the battery, it should be wrapped and secured separately before being packed with the instrument. - **2.** Install the front cover on the 1503C and surround the instrument with polyethylene sheeting to protect the finish. - **3.** Cushion the instrument on all sides with packing material or urethane foam between the carton and the sides of the instrument. - **4.** Seal with shipping tape or an industrial stapler. If you have any questions, contact your local Tektronix Field Office or representative. ## **Contacting Tektronix** Product For questions about using Tektronix measurement products, call Support toll free in North America: 1-800-833-9200 6:00 a.m. - 5:00 p.m. Pacific time Or contact us by e-mail: tm_app_supp@tek.com For product support outside of North America, contact your local Tektronix distributor or sales office. Service Tektronix offers a range of services, including Extended Warranty support Repair and Calibration services. Contact your local Tektronix distributor or sales office for details. For a listing of worldwide service centers, visit our web site. Toll-free In North America: Number 1-800-833-9200 An operator can direct your call. Postal Tektronix, Inc. Address Department or name (if known) P.O. Box 500 Beaverton, OR 97077 USA Web site www.tektronix.com # **Operating Instructions** ## **Overview** ### Handling The 1503C front panel is protected by a watertight cover, in which the standard accessories are stored. Secure the front cover by snapping the side latches outward. If the instrument is inadvertently left on, installing the front cover will turn off the POWER switch automatically. The carrying handle rotates 325° and serves as a stand when positioned beneath the instrument. The 1503C can be stored in temperatures ranging from -62° C to $+85^{\circ}$ C if a battery is not installed. If a battery is installed and the storage temperature is below -35° C or above $+65^{\circ}$ C, the battery pack should be removed and stored separately (see 1503C Service Manual for instructions on removing the battery). Battery storage temperature should be between -35° C to $+65^{\circ}$ C. ### Powering the 1503C In the field, the 1503C can be powered using the internal battery. For AC operation, check the rear panel for proper voltage setting. The voltage selector can be seen through the window of the protective cap. If the setting differs from the voltage available, it can be easily changed. Simply remove the protective cap and select the proper voltage using a screwdriver. Figure 1-1: Rear Panel Voltage Selector, Fuse, AC Receptacle The 1503C is intended to be operated from a power source that will not apply more than 250 V RMS between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation. The AC power connector is a three-way polarized plug with the ground (earth) lead connected to the instrument frame to provide electrical shock protection. If the unit is connected to any other power source, the unit frame must be connected to an earth ground. See Safety and Installation section. **CAUTION.** If you change the voltage selector, you must change the line fuse to the appropriate value as listed near the fuse holder and in the table below. | FUSE RATING | FUSE RATING VOLTAGE RATING | | |-------------|----------------------------|--| | 250 V | NOMINAL RANGE | | | 0.3 A T | 115 VAC (90 – 132 VAC) | | | 0.15 A T | 230 VAC (180 – 250 VAC) | | ### **Care of the Battery Pack** **CAUTION.** Read these instructions concerning the care of the battery pack. They contain instructions that reflect on your safety and the performance of the instrument. The 1503C can be powered by a rechargeable lead-gel battery pack that is accessible only by removing the case from the instrument. When AC power is applied, the battery pack is charged at a rate that is dependent on the battery charge state. The battery pack will operate the 1503C for a minimum of eight continuous hours (including making 30 chart recordings) if the LCD backlight is turned off. ### **Battery Charging** The battery pack will charge fully in 16 hours when the instrument is connected, via the power cord, to an AC power source with the instrument turned off. The instrument may be turned on and operated while the batteries are charging, but this will increase the charging time. For longest battery life, a full charge is preferred over a partial charge. For maximum capacity, the batteries should be charged within a temperature range of $+20^{\circ}$ C to $+25^{\circ}$ C. However, the batteries can be charged within a temperature range of 0° C to $+40^{\circ}$ C and operated in temperatures ranging from -10° C to $+55^{\circ}$ C. **CAUTION.** Do not charge battery pack below 0° C or above $+40^{\circ}$ C. Do not discharge battery pack below -10° C or above $+55^{\circ}$ C. If removing the battery pack during or after exposure to these extreme conditions, turn the instrument off and remove the AC power cord. The battery pack should be stored within a temperature range of -35° C to $+65^{\circ}$ C. However, the self-discharge rate will increase as the temperature increases. If the instrument is stored with the battery pack installed, the battery pack should be charged every 90 days. A fully charged battery pack will lose about 12% of its capacity in three to four months if stored between +20° C and +25° C. **NOTE**. The battery pack in the 1503C is inside the instrument case with no external access. Refer removal and replacement to qualified service personnel. ### **Battery Removal** - **1.** Ensure that the instrument power is off. - **2.** If the instrument is connected to an AC power source, remove the AC power cable from the source and from the instrument. - 3. If installed, remove the chart recorder, or other device, from the option port. - **4.** Loosen the four screws on the back of the case and set the instrument face-up on a flat surface. - **5.** Swing the handle out of the way of the front panel. - **6.** Break the chassis seal by pushing downward with both hands on the handle pivots on each side of the case. - 7. Grasp the case with one hand and tilt the chassis out with the other. Lift by grasping the outside perimeter of the front panel. **CAUTION.** Do not lift the instrument by the front-panel controls. The controls will be damaged if you do so. - **8.** Remove the top shield from the instrument by gently lifting the rear edge near the sides of the
instrument. - **9.** Unplug the battery cable positive lead at the battery. - **10.** Unplug the battery cable negative lead at the battery. - **11.** Unplug the battery cable at the power supply. 1503C MTDR Service Manual - 12. Remove the cable. - **13.** Remove the two screws mounting the battery clamp to the chassis. - **14.** Carefully remove the clamp without touching the battery terminals. - 15. Lift the battery out. To re-install or replace the battery, repeat the above steps in reverse order. #### **Low Battery** If the battery is low, it will be indicated on the LCD (bat/low). If this is the case, protective circuitry will shut down the 1503C within minutes. Either switch to AC power or work very fast. If the instrument is equipped with a chart recorder, using the recorder will further reduce the battery level, or the added load might shut down the instrument. Figure 1–2: Display Showing Low Battery Indication Protection circuits in the charger prevent deep discharge of the batteries during instrument operation. The circuits automatically shut down the instrument whenever battery voltage falls below approximately 10 V. If shutdown occurs, the batteries should be fully recharged before further use. **NOTE**. Turn the POWER switch off after instrument shutdown to prevent continued discharge of the batteries. ## Low Temperature Operation When the instrument is stored at temperatures below -10° C, voids might develop in the liquid crystal display (LCD). These voids should disappear if the instrument is placed in an ambient temperature $\geq +5^{\circ}$ C for 24 hours. When operating the 1503C in an environment below $+10^{\circ}$ C, a heater will activate. The element is built into the LCD module and will heat the display to permit normal operation. Depending on the surrounding temperature, it might take up to 15 minutes to completely warm the crystals in the LCD. Once warmed, the display will operate normally. ## **Preparing to Use the 1503C** Check the power requirements, remove the front cover, and you are ready to test cables. The following pages explain the front-panel controls. Figure 1-3: 1503C Front-Panel Controls **CAUTION**. Do not connect to circuits or cables with live voltages greater than 400 V peak. Voltages exceeding 400 V might damage the 1503C front-end circuits. 1503C MTDR Service Manual ## **Display** Figure 1-4: Display and Indicators ### **Front-Panel Controls** **1. CABLE:** A female BNC connector for attaching a cable to the 1503C for testing. - 3. NOISE FILTER: If the displayed waveform is noisy, the apparent noise can be reduced by using noise averaging. Averaging settings are between 1 and 128. The time for averaging is directly proportional to the averaging setting chosen. A setting of 128 might take the instrument up to 35 seconds to acquire and display a waveform. The first two positions on the NOISE FILTER control are used for setting the vertical and horizontal reference points. The selected value or function is displayed above the control on the LCD. - **4. VERT SCALE:** This control sets the vertical gain, displayed in dB, or the vertical sensitivity, displayed in mρ per division. Although the instrument defaults to dB, you may choose the preferred mode from the *Setup Menu*. The selected value is displayed above the control on the LCD. - **5. DIST/DIV:** Determines the number of feet (or meters) per division across the display. The minimum setting is 1 ft/div (0.25 meters) and the maximum setting is 5000 ft/div (1000 meters). The selected value is displayed above the control on the LCD. - A standard instrument defaults to ft/div. A metric instrument (Option 05) defaults to m/div, but either may be changed temporarily from the menu. The default can be changed by changing an internal jumper (see Chapter 7). - **6. Vp:** The two Velocity of Propagation controls are set according to the propagation velocity factor of the cable being tested. For example, solid polyethylene commonly has a Vp of 0.66. Solid polytetraflourethylene (Teflon ®) is approximately 0.70. Air is 0.99. The controls are decaded: the left control is the first digit and the right control is the second digit. For example, with a Vp of 0.30, the first knob would be set to .3 and the second knob to .00. - **7. POWER:** Pull for power ON and push in for power OFF. When the front cover is installed, this switch is automatically pushed OFF. - **8. PULSE WIDTH:** This is a five-position rotary switch that selects the pulse width of the cable test signal. The available settings are: 2, 10, 100, 1000 nanoseconds, and AUTO. The selected value is displayed on the LCD adjacent to the control. The AUTO setting sets the pulse width according to the distance registered at the right side of the LCD. The selected value is displayed to the left of this control on the LCD. - **9.** $\stackrel{\triangle}{\nabla}$ **POSITION:** This is a continuously rotating control that positions the displayed waveform vertically, up or down the LCD. - **10.** △ POSITION: This is a continuously rotating control that moves a vertical cursor completely across the LCD graticule. In addition, the waveform is also moved when the cursor reaches the extreme right or left side of the display. A readout (seven digits maximum) is displayed in the upper right corner of the LCD, showing the distance from the front panel BNC to the current cursor location. - 11. MENU: This pushbutton provides access to the menus and selects items chosen from the menus. - **12. VIEW INPUT:** When pushed momentarily, this button toggles the display of the waveform acquired at the CABLE connector. This function is useful to stop displaying a current waveform to avoid confusion when looking at a stored waveform. This function defaults to ON when the instrument is powered up. - **13. VIEW STORE:** When pushed momentarily, this button toggles the display of the stored waveform. - **14. VIEW DIFF:** When pushed momentarily, this button toggles the display of the current waveform minus the stored waveform and shows the difference between them. - **15. STORE:** When pushed momentarily, the waveform currently displayed will be stored in the instrument memory. If a waveform is already stored, pushing this button will erase it. The settings of the stored waveform are available from the first level menu under *View Stored Waveform Settings*. ### **Menu Selections** There are several layers of menu, as explained below. #### Main Menu The Main Menu is entered by pushing the MENU button on the front panel. - **1. Return to Normal Operations** puts the instrument into normal operation mode. - **2. Help with Instrument Controls** explains the operation of each control. When a control or switch is adjusted or pushed, a brief explanation appears on the LCD. - **3.** Cable Information has these choices: - **a.** Help with Cables gives a brief explanation of cable parameters. - **b.** Velocity of Propagation Values displays a table of common dielectrics and their Vp values. These are nominal values. The manufacturer's listed specifications should be used whenever possible. - **c. Impedance Values** displays impedances of common cables. In some cases, these values have been rounded off. Manufacturer's specifications should be checked for precise values. - **d.** Finding Unknown Vp Values describes a procedure for finding an unknown Vp. - **4. Setup Menu** controls the manner in which the instrument obtains and displays its test results. - a. Acquisition Control Menu has these choices: - i. Max Hold Is: On/Off. Turn Max Hold on by pushing MENU then STORE. In this mode, waveforms are accumulated on the display. Max Hold can be deactivated by pushing STORE or the mode exited by using the Setup Menu. - **ii. Pulse Is: On/Off.** Turns the pulse generator off so the 1503C does not send out pulses. - **iii. Single Sweep Is: On/Off.** This function is much like a still camera; it will acquire one waveform and hold it. - **b.** Vertical Scale Is: dB/mρ. This offers you a choice as to how the vertical gain of the instrument is displayed. You may choose decibels or millirho. When powered down, the instrument will default to decibels when powered back up. - **c. Distance/Div Is: ft/m**. Offers you a choice of how the horizontal scale is displayed. You may choose from feet per division or meters per division. When powered up, the instrument will default to feet unless the internal jumper has been moved to the meters position. Instructions on changing this default are contained in Chapter 7. - **d. Light Is: On/Off**. This control turns the electroluminescent backlight behind the LCD on or off. - **5. Diagnostics Menu** lists an extensive selection of diagnostics to test the operation of the instrument. - a. Service Diagnostics Menu has these choices: - **i. Sampling Efficiency Diagnostic** displays a continuous efficiency diagnostic of the sampling circuits. - **ii. Noise Diagnostic** measures the internal RMS noise levels of the instrument. - **iii. Impedance Diagnostic** tests the output impedance circuits in the instrument. - **iv. Offset/Gain Diagnostic** reports out-of-tolerance steps in the programmable gain stage. This can help a service technician to quickly isolate the cause of waveform distortion problems. - v. RAM/ROM Diagnostics Menu performs tests on the RAM (Random Access Memory) and the ROM (Read Only Memory). - vi. Timebase Is: Normal Auto Correction / Diagnostic No Correction. When in *Normal Auto Correction*, the instrument compensates for variations in temperature and voltage. This condition might not be desirable while calibrating the instrument. While in *Diagnostic No Correction*, the circuits will not correct for these variations. - **b.** Front Panel Diagnostics aids in testing the front panel. - c. LCD Diagnostics Menu has these choices: - **i. LCD Alignment Diagnostic** generates a dot pattern of every other pixel on the LCD. These pixels can be alternated to test the
LCD. - **ii. Response Time Diagnostic** generates alternate squares of dark and light, reversing their order. This tests the response time of the LCD and can give an indication of the effectiveness of the LCD heater in a cold environment. - **iii. LCD Drive Test Diagnostic** generates a moving vertical bar pattern across the LCD. - iv. Contrast Adjust allows you to adjust the contrast of the LCD. It generates an alternating four-pixel pattern. The nominal contrast is set 1503C MTDR Service Manual internally. When in *Contrast Adjust* mode, VERT SCALE is used as the contrast adjustment control. This value ranges from 0 to 255 units and is used by the processor to evaluate and correct circuit variations caused by temperature changes in the environment. - **d.** Chart Diagnostics Menu offers various tests for the optional chart recorder. - **i. LCD Chart** allows adjusting the number of dots per segment and the number of prints (strikes) per segment. - **ii. Head Alignment Chart** generates a pattern to allow mechanical alignment of the optional chart recorder. - **6. View Stored Waveform Settings** displays the instrument settings for the stored waveform. - 7. Option Port Menu contains three items. Two items allow configuration of the option port for communicating with devices other than the optional chart recorder and one item test the option port. - **a. Option Port Diagnostic** creates a repeating pattern of signals at the option port to allow service technicians to verify that all signals are present and working correctly. - **b. Set Option Port Timing** allows adjustment of the data rate used to communicate with external devices. The timing rate between bytes can be set from about 0.05 to 12.8 milliseconds. - **c. Option Port Debugging Is Off/On**. Off is quiet, On is verbose. This chooses how detailed the error message reporting will be when communicating with an external device. It is possible to connect the instrument to a computer through a parallel interface with a unique software driver. Because different computers vary widely in processing speed, the instrument must be able to adapt to differing data rates while communicating with those computers. With user-developed software drivers, the ability to obtain detailed error messages during the development can be very useful. For more information, contact your Tektronix Customer Service representatives. They have information describing the option port hardware and software protocol and custom development methods available. The SP-232, a serial interface product, also allows for connection of the 1503C to other instrumentation, including computers, via the option port. SP-232 is an RS-232C-compatible interface. For more information, contact your Tektronix Customer Service Representative. They can provide you with additional details on the hardware and software protocol. **8. Display Contrast** (Software Version 5.02 and above) - **a.** Press the MENU button firmly once. If the display is very light or very dark, you might not be able to see a change in the contrast. - **b.** Turn the VERTICAL SCALE knob slowly clockwise to darken the display or counterclockwise to lighten the display. If you turn the knob far enough, the contrast will wrap from the darkest to lightest value. - **c.** When the screen is clearly readable, press the MENU button again to return to normal measurement operation. The new contrast value will remain in effect until the instrument is turned off. ## **Test Preparations** The Importance of Vp (Velocity of Propagation) Vp is the speed of a signal down the cable given as a percentage of the speed of light in free space. It is sometimes expressed as a whole number (e.g., 66) or a percentage (e.g., 66%). On the 1503C, it is the percentage expressed as a decimal number (e.g., 66% = .66). If you do not know the velocity of propagation, you can get a general idea from the following table, or use the *Help with Cables* section of the *Cable Information* menu. You can also find the Vp with the procedure that follows using a cable sample. **NOTE**. If you do not know the Vp of your cable, it will not prevent you from finding a fault in your cable. However, if the Vp is set wrong, the distance readings will be affected. All Vp settings should be set for the cable under test, not the supplied jumper cable. ### Vp of Various Dielectric Types | Dielectric | Probable Vp | |--------------------------------|-------------| | Jelly Filled | .64 | | Polyethylene (PIC, PE, or SPE) | .66 | | PTFE (Teflon ®) or TFE | .70 | | Pulp Insulation | .72 | | Foam or Cellular PE (FPE) | .78 | | Semi-solid PE (SSPE) | .84 | | Air (helical spacers) | .98 | 1503C MTDR Service Manual # Impedance of Various Cable Types | 50 Ω | 75 Ω | 93 Ω | 125 Ω | |-----------------|------------|--------------|--------------| | RG-4 | RG-6/U | RG-7/U | RG-23/U | | RG-8/U | RG-11/U | RG-22/U | RG-63/U | | RG-9/U | RG-12/U | RG-62/U | RG-79/U | | RG-58/U | RG-13/U | RG-71/U | RG-89/U | | RG-62/U | RG-59/U | RG-111/U | Flat Lead | | RG-81 | RG-124/U | Twisted Pair | Twisted Pair | | RG-93 | RG-140/U | | | | RG-142B/U | RG-179/U | | | | RG-225/U | 75 Ω Video | | | | RG-303B/U | | | | | RG-316/U | | | | | RG-393/U | | | | | Vertebrae Helix | | | | ### Finding an Unknown Vp - **1.** Obtain a known length of cable of the exact type you wish to test. Attach the cable to the CABLE connector on the front panel. - **2.** Pull POWER on. - **3.** Turn the DIST/DIV to an appropriate setting (e.g., if trying to find the Vp of a three-foot cable, turn the DIST/DIV to 1 ft/div). - **4.** Turn the ⊲⊳ POSITION control until the distance reading is the same as the known length of this cable. - **5.** Turn the Vp controls until the cursor is resting on the rising portion of the reflected pulse. The Vp controls of the instrument are now set to the Vp of the cable. The following three illustrations show settings too low, too high, and correct for a sample three-foot cable. Figure 1–5: Vp Set at .30, Cursor Beyond Reflected Pulse (Setting Too Low) Figure 1–6: Vp Set at .99, Cursor Less Than Reflected Pulse (Setting Too High) Figure 1–7: Vp Set at .66, Cursor on Rising Edge of Reflected Pulse (Set Correctly) #### **Cable Test Procedure** #### Distance to the Fault Be sure to read the previous paragraphs on Vp. 1. Set the 1503C controls: POWER On Cable to BNC IMPEDANCE 50Ω NOISE FILTER 1 avg DIST/DIV (see below) Vp (per cable) PULSE WIDTH (per cable) **2.** If you know approximately how long the cable is, set the DIST/DIV appropriately (e.g., 20-ft cable would occupy four divisions on the LCD if 5 ft/div was used). The entire cable should be displayed. Figure 1-8: 20-ft Cable at 5 ft/div If the cable length is unknown, set DIST/DIV to 5000 ft/div and continue to decrease the setting until the reflected pulse is visible. Depending on the cable length and the amount of pulse energy absorbed by the cable, it might be necessary to increase the VERT SCALE to provide more gain to see the reflected pulse. The best pulse width is dependent on the cable length. A short pulse can be completely dissipated in a long cable. Increasing the pulse width will allow the reflected pulse to be more visible when testing long cables. AUTO will select the pulse width for you, depending on the distance on the right side of the LCD. | CABLE LENGTH | SUGGESTED PULSE | SUGGESTED ft/div | |-------------------|-----------------|------------------| | 0 to 100 ft | 2 ns | 10 ft/div | | 51 to 500 ft | 10 ns | 50 ft/div | | 501 to 5000 ft | 100 ns | 500 ft/div | | 5001 to 50,000 ft | 1000 ns | 5000 ft/div | When the entire cable is displayed, you can tell if there is an open or a short. Essentially, a drop in the pulse is a short and a rise in the pulse is an open. Less catastrophic faults can be seen as hills and valleys in the waveform. Bends and kinks, frays, water, and interweaving all have distinctive signatures. Figure 1-9: Short in the Cable Figure 1-10: Open in the Cable 3. To find the distance to the fault or end of the cable, turn the △▷ POSITION control until the cursor rests on the leading edge of the rising or falling reflected pulse (see Figure 1–10). Read the distance in the distance window in the upper right corner of the display. A more thorough inspection might be required. This example uses a longer cable: **4.** When inspecting a 455-foot cable, a setting of 100 ft/div allows a relatively fast inspection. If needed, turn VERT SCALE to increase the gain. The higher the gain, the smaller the faults that can be detected. If noise increases, increase the NOISE FILTER setting. Figure 1-11: 455-ft Cable 5. Change DIST/DIV to 20 ft/div. The entire cable can now be inspected in detail on the LCD. Turn the ▷ POSITION control so the cursor travels to the far right side of the LCD. Keep turning and the cable will be "dragged" across the display. Figure 1-12: 455-ft Cable with 20 ft/div, Cursor Off Screen A "rise" or "fall" is a signature of an impedance mismatch (fault). A dramatic rise in the pulse indicates and open. A dramatic lowering of the pulse indicates a short. Variations, such as inductive and capacitive effects on the cable, will appears as bumps and dips in the waveform. Capacitive faults appear as a lowering of the pulse (e.g., water in the cable). Inductive faults appear as a rising of the pulse (e.g., kinks in the cable). Whenever an abnormality is found, set the cursor at the beginning of the fault and read the distance to the fault on the distance window of the LCD. #### Return Loss Measurements Return loss is another was of measuring impedance changes in a cable. Mathematically, return loss is related to rho by the formula: Return Loss (in dB) = $-20 * \log$ (base ten) of Absolute Value of Rho (V_{ref}/V_{inc}) To measure return loss with the 1503C, note the height of the incident pulse, then adjust the reflected pulse to be the same height that the incident pulse was and read the dB on the LCD
display. The amount of vertical scale change that was needed is the return loss in dB. Figure 1-13: Return Loss A large return loss means that most of the pulse energy was lost instead of being returned as a reflection. The lost energy might have been sent down the cable or absorbed by a terminator or load on the cable. A terminator matched to the cable would absorb most of the pulse, so its return loss would be large. An open or short would reflect all the energy, so its return loss would be zero. #### Reflection Coefficient Measurements The 1503C can be made to display in mp/div instead of dB through MENU. - 1. Press MENU. - 2. Select Setup Menu. - 3. Press MENU. - **4.** Select Vertical Scale is: Decibels. - **5.** Press MENU. This changes the selection to *Vertical Scale is: Millirho*. - **6.** Press MENU again to exit from the Setup Menu. - 7. Press MENU again to return to normal operation. The reflection coefficient is a measure of the impedance change at a point in the cable. It is the ratio of the signal reflected back from a point divided by the signal going into that point. It is designated by the Greek letter ρ , and is written in this manual as Rho. The 1503C measures reflection coefficient in millirho (thousandths of a rho). To measure a reflection, adjust VERT SCALE to make the reflection one division high. Read the reflection coefficient directly off the display above the VERT SCALE control. For reflections that are greater than 500 mp/div, adjust VERT SCALE for a reflection that is two divisions high and multiply the VERT SCALE reading by two. Figure 1–14: Reflection Adjusted to One Division in Height In an ideal transmission system with no changes in impedance, there will be no reflections, so rho is equal to zero. A good cable that is terminated in its characteristic impedance is close to ideal and will appear as a flat line on the 1503C display. Small impedance changes, like those from a connector, might have reflections from 10 to 100 mp. If rho is positive, it indicates an impedance higher than that of the cable before the reflection. It will show as an upward shift or bump on the waveform. If rho is negative, it indicates an impedance lower than that of the cable prior to the reflection. It will show as a downward shift or dip on the waveform. If the cable has an open or short, all the energy sent out by the 1503C will be reflected. This is a reflection coefficient of rho = 1, or +1000 mp for the open and -1000 mp for the short. # Effect of Cable Attenuation on Return Loss and Reflection Coefficient Measurements Cable attenuation influences the return loss and reflection coefficient measurements made with the 1503C. If you desire to measure the return loss of only an impedance mismatch, the cable attenuation, as measured with an open or short circuit on the cable, must be subtracted from the directly measured value. For reflection coefficient, the directly measured value of rho must be divided by the value measured with an open or short circuit on the cable. These calculations can be done manually, or the instrument can perform them by proper use of the VERT SET REF function. It is is not possible to measure the cable under test with an open or short, sometimes another cable of similar type is available to use as a reference. Note that cable attenuation is strongly influenced by signal frequency and, therefore, will be different from one pulse width to another on the 1503C. #### **Using VIEW INPUT** When pushed, the VIEW INPUT button displays the input at the front panel CABLE connector. When VIEW INPUT is turned off and no other buttons are pushed, the display will not have a waveform on it (see Figure 1–15). The default condition when the instrument is powered up is to have VIEW INPUT on. Figure 1-15: Display with VIEW INPUT Turned Off # How to Store the Waveform When pushed, the STORE button puts the current waveform being displayed into memory. If already stored, pushing STORE again will erase the stored waveform. Figure 1-16: Display of a Stored Waveform The front panel control settings and the menu-accessed settings are also stored. They are accessed under *View Stored Waveform Settings* in the first level of the menu. #### **Using VIEW STORE** The VIEW STORE button, when pushed on, displays the waveform stored in the memory as a dotted line. If there is no waveform in memory, a message appears on the LCD informing you of this. Figure 1–17: Display of a Stored Waveform and Current Waveform #### **Using VIEW DIFF** When pushed on, the VIEW DIFF button displays the difference between the current waveform and the stored waveform as a dotted line. If no waveform has been stored, a message will appear. The difference waveform is made by subtracting each point in the stored waveform from each point in the current waveform. **NOTE**. If the two waveforms are identical (e.g., if STORE is pushed and VIEW DIFF is immediately pushed) the difference would be zero. Therefore you would see the difference waveform as a straight line. Figure 1–18: Display of a Stored Waveform, Current Waveform, and Difference Waveform The VIEW DIFF waveform will move up and down with the current input as you move the $^{\Delta}$ POSITION control. Any of the waveforms may be turned on or off independently. You might want to turn off some waveforms if the display becomes too busy or confusing. **NOTE**. Because the stored waveform is not affected by changes in the instrument controls, care should be taken with current waveform settings or the results could be misleading. One method to minimize the overlapping of the waveforms in VIEW DIFF is: 1. Move the waveform to be stored into the top half of the display. Figure 1–19: Waveform Moved to Top Half of Display - **2.** Push STORE to capture the waveform. Remember, once it is stored, this waveform cannot be moved on the display. - **3.** Move the current waveform (the one you want to compare against the stored waveform) to the center of the display. **4.** Push VIEW STORE and the stored waveform will appear above the current waveform. Figure 1–20: Current Waveform Centered, Stored Waveform Above **5.** Push VIEW DIFF and the difference waveform will appear below the current waveform. Figure 1–21: Current Waveform Center, Stored Waveform Above, Difference Below Notice the VIEW INPUT waveform is solid, VIEW DIFF is dotted, and VIEW STORE is dot-dash. There are many situations where the VIEW DIFF function can be useful. One common situation is to store the waveform of a suspect cable, repair the cable, then compare the two waveforms after the repair. During repairs, the VIEW INPUT, VIEW DIFF, and VIEW STORE waveforms can be used to judge the effectiveness of the repairs. The optional chart recorder can be used to make a chart of the three waveforms to document the repair. Another valuable use for the VIEW DIFF function is for verifying cable integrity before and after servicing or periodic maintenance that requires moving or disconnecting the cable. The VIEW DIFF function is useful when you want to see any changes in the cable. In some systems, there might be several reflections coming back from each branch of the network. It might become necessary to disconnect branch lines from the cable under test to determine whether a waveform represents a physical fault or is simply an echo from one of the branches. The STORE and VIEW DIFF functions allow you to see and compare the network with and without branches. Two important things to be observed when using the VIEW DIFF function: - If you change either the VERT SCALE or DIST/DIV, you will no longer be comparing features that are the same distance apart or of the same magnitude on the display. It is possible to save a feature (e.g., a connector or tap) at one distance down the cable and compare it to a similar feature at a different distance by moving the <>POSITION and \$\frac{1}{2}POSITION controls. - When this is done, great care should be taken to make sure the vertical and horizontal scales are identical for the two waveforms being compared. If either the stored or current waveform is clipped at the top or bottom of the display, the difference waveform will be affected. #### Using Horizontal Set Reference HORZ SET REF (Δ mode) allows you to offset the distance reading. For example, a lead-in cable to a switching network is three feet long and you desire to start the measurement after the end of the lead-in cable. HORZ SET REF makes it simple. Figure 1–22: Waveform of Three-Foot Lead-in Cable - 1. Turn the NOISE FILTER control to HORZ SET REF. The noise readout on the LCD will show: set Δ . - **2.** Turn the <a>□POSITION control to set the cursor where you want to start the distance reading. This will be the new zero reference point. For a three-foot lead-in cable, the cursor should be set at 3.00 ft. Figure 1–23: Cursor Moved to End of Three-Foot Lead-in Cable #### **3.** Push STORE. **4.** Turn the NOISE FILTER control to 1 avg. The instrument is now in HORZ SET REF, or delta mode. The distance window should now read 0.00 ft. As the cursor is scrolled down the cable, the distance reading will now be from the new zero reference point. Figure 1–24: Cursor Moved to End of Three-Foot Lead-in Cable **NOTE**. Vp changes will affect where the reference is set on the cable. Be sure to set the Vp first, then set the delta to the desired location. - **5.** To exit HORZ SET REF, use the following procedure: - **a.** Turn the NOISE FILTER control to HORZ SET REF. - **b.** Turn DIST/DIV to 1 ft/div. If the distance reading is extremely high, you might want to use a higher setting initially, then turn to 1 ft/div for the next adjustment. - **c.** Turn the ▷POSITION control until the distance window reads 0.00 ft. Figure 1–25: Cursor Moved to 0.00 ft - d. Push STORE. - e. Turn NOISE FILTER to desired setting. # Using Vertical Set Reference VERT SET REF works similar to HORZ SET REF except that it sets a reference
for gain (pulse height) instead of distance. This feature allows zeroing the dB scale at whatever pulse height is desired. - **1.** Turn NOISE FILTER fully counterclockwise. "Set Ref" will appear in the noise averaging area of the LCD. - **2.** Adjust the incident pulse to the desired height (e.g., four divisions). It might be necessary to adjust $\frac{\Delta}{7}$ POSITION. Figure 1–26: Incident Pulse at Four Divisions, FILTER at Desired Setting - **3.** Push STORE. - **4.** Return NOISE FILTER to the desired setting. Notice that the dB scale is now set to 0.00 dB. - **5.** To exit VERT SET REF, use the following procedure: - **a.** Make sure the vertical scale is in dB mode (access the Setup Menu if change is needed). - **b.** Turn NOISE FILTER to VERT SET REF. - c. Adjust VERT SCALE to obtain 0.00 dB. - d. Push STORE. - **e.** Turn NOISE FILTER to desire filter setting. Because dB is actually a ratio between the energy sent out and the energy reflected back, using VERT SET REF does not affect the dB difference measured. **NOTE**. Do not use Auto Pulse Width when making measurements in VERT SET REF. Auto Pulse Width changes the pulse width at 100, 500, and 5000 feet. If the pulse width changes while in VERT SET REF, it could result in an erroneous reading. Manually controlling the pulse width assures the pulse width remains the same for both the incident and reflective pulses. #### Additional Features (Menu Selected) #### Max Hold The 1503C will capture and store waveforms on an ongoing basis. This is useful when the cable or wire is subjected to intermittent or periodic conditions. The 1503C will monitor the line and display any fluctuations on the LCD. - 1. Attach the cable to the 1503C front-panel CABLE connector. - 2. Push MENU to access the main menu. - **3.** Scroll to *Setup Menu* and push MENU again. - **4.** Scroll to *Acquisition Control Menu* and push MENU again. - **5.** Scroll to *Max Hold is: Off* and push MENU again. This line will change to *Max Hold is: On.* The monitoring function is now ready to activate. - **6.** Repeatedly push MENU until the instrument returns to normal operation. Figure 1–27: Waveform Viewed in Normal Operation 7. When you are ready to monitor this cable for intermittents, push STORE. The 1503C will now capture any changes in the cable. Figure 1–28: Waveform Showing Intermittent Short - **8.** To exit monitor mode, push STORE again. - **9.** To exit Max Hold, access the *Acquisition Control Menu* again, turn off Max Hold, and push MENU repeatedly until the instrument returns to normal operation. #### Pulse On/Off This feature puts the 1503C in a "listening mode" by turning off the pulse generator. - 1. Attach a cable to the 1503C front-panel CABLE connector. - 2. Push MENU to access the Main Menu. - 3. Scroll to Setup Menu and push MENU again. - **4.** Scroll to *Acquisition Control Menu* and push MENU again. - **5.** Scroll to *Pulse is: On* and push MENU again. This will change to *Pulse is: Off.* Figure 1–29: Waveform Display with No Outgoing Pulses **6.** Repeatedly press MENU until the instrument returns to normal operation. This feature allows the 1503C to act much like a non-triggered oscilloscope. In this mode, the 1503C is acting as a detector only. Any pulses detected will not originate from the instrument, so any distance readings will be invalid. If you are listening to a local area network, for example, it is possible to detect traffic, but not possible to measure the distance to its origin. Pulse is: Off can be used in conjunction with Max Hold is: On. **7.** To exit *Pulse is: Off*, access the *Acquisition Control Menu* again, turn the pulse back on, then repeatedly push MENU until the instrument returns to normal operation. #### Single Sweep The single sweep function will acquire one waveform only and display it. - 1. Attach a cable to the 1503C front-panel CABLE connector. - 2. Push MENU to access the Main Menu. - 3. Scroll to Setup Menu and push MENU again. - **4.** Scroll to *Acquisition Control Menu* and push MENU again. - **5.** Scroll to *Single Sweep is: Off* and push MENU again. This will change to *Single Sweep is: On*. - **6.** Repeatedly press MENU until the instrument returns to normal operation. - 7. When you are ready to begin a sweep, push VIEW INPUT. A sweep will also be initiated when you change any of the front-panel controls. This allows you to observe front panel changes without exiting the Single Sweep mode. As in normal operation, averaged waveforms will take longer to acquire. Figure 1–30: A Captured Single Sweep **8.** To exit *Single Sweep is: On*, access the *Acquisition Control Menu* again, turn the Single Sweep back off, then repeatedly push MENU until the instrument returns to normal operation. Operating Instructions ### **Operator Performance Checks** This chapter contains performance checks for many of the functions of the 1503C. They are recommended for incoming inspections to verify that the instrument is functioning properly. Procedures to verify the actual performance requirements are provided in the Chapter 6. Performing these checks will assure you that your instrument is in good working condition. These checks should be performed upon receipt of a new instrument or one that has been serviced or repaired. It does not test all portions of the instrument to Calibration specifications. The purpose of these checks is not to familiarize a new operator with the instrument. If you are not experienced with the instrument, you should read the *Operating Instructions* chapter of this manual before going on with these checks. If the instrument fails any of these checks, it should be serviced. Many failure modes affect only some of the instrument functions. #### **Equipment Required** | Item | Tektronix Part Number | |----------------------------|-----------------------| | 50 Ω precision terminator | 011-0123-00 | | 93 Ω 10-foot coaxial cable | 012–1351–00 | #### **Getting Ready** Disconnect any cables from the front-panel CABLE connector. Connect the instrument to a suitable power source (a fully charged optional battery pack or AC line source). If you are using AC power, make sure the fuse and power switch are correct for the voltage you are using (115 VAC requires a different fuse than 230 VAC). #### Power On Pull the POWER switch on the front panel. If a message does not appear on the display within a second or two, turn the instrument off. There are some failure modes that could permanently damage or ruin the LCD if the power is left on for more than a minute or so. Refer to the *Troubleshooting* section of the *Maintenance* chapter in this manual. #### **Metric Instruments** Option 05 instruments default to metric; however, you can change the metric scale to ft/div in the *Setup Menu* or use the metric numbers provided. To change the readings, press the MENU button. Using the $\frac{\Delta}{\nabla}$ POSITION control, scroll down to *Setup Menu* and press MENU again. Scroll down to *Distance/Div is: m/div* and press MENU again. This will change to ft/div. Press the MENU button repeatedly to return to normal operation mode. If the instrument power is turned off, these checks must be repeated again when the instrument is powered on again. #### **Set Up** Set the 1503C front-panel controls: | IMPEDANCE | 93 Ω | |------------------|-------------------| | NOISE FILTER | 1 avg | | VERT SCALE | 10.00 dB | | DIST/DIV | 2 ft/div (0.25 m) | | Vp | .84 | | PIII SE WIDTH | 2 ns | # 1. Horizontal Scale (Timebase) Check If the instrument fails this check, it must be repaired before any distance measurements can be made with it. 1. Turn the 1503C power on. The display should look very similar to Figure 2–1. Figure 2-1: Start-up Measurement Display **2.** Connect the 10-foot cable to the front-panel CABLE connector. The display should now look like Figure 2–2. Figure 2–2: Measurement Display with 10-foot Cable 3. Using the △▷ POSITION control, measure the distance to the rising edge of the waveform at the open end of the cable. The distance shown on the display distance window (upper right corner of the LCD) should be from 9.7 to 10.3 feet (2.95 to 3.14 m). Figure 2-3: Cursor at End of 10-foot Cable **4.** Change the Vp to .30. Using the ^{⊲▷} POSITION control, measure the distance to the rising edge of the waveform at the open end of the cable. The distance shown on the display distance window (upper right corner of the LCD) should be from 3.50 to 3.70 feet (1.05 to 1.11 m). Figure 2-4: Cursor at End of 10-foot Cable, Vp Set to .30 **5.** Remove the 10-foot cable and connect the 50 Ω terminator. Change the 1503C front-panel controls to: VERT SCALE 0.00 dB DIST/DIV 5000 ft/div (1000 m/div) PULSE WIDTH 1000 ns **6.** Turn the △▷ POSITION control clockwise until the display distance window reads a distance greater the 50,000 feet (15,259 m). The waveform should bat 50600.00 ft remain a flat line from zero to this distance. Figure 2-5: Flatline Display Out to 50,000+ Feet # 2. Vertical Position (Offset) Check If the instrument fails this test, it can be used, but should be serviced when possible. Not all of the waveforms will be viewable at all gain settings. 1. Using the $\frac{\Delta}{\nabla}$ POSITION control, verify that the entire waveform can be moved to the very top of the display (off the graticule area). Figure 2-6: Waveform Off the Top of the Display 2. Using the $\frac{\Delta}{\nabla}$ POSITION control, verify that the entire waveform can be moved to the very bottom of the display (to the bottom graticule line). Figure 2–7: Waveform at the Bottom of the Display #### 3. Noise Check If the instrument fails this check, it may still be usable for measurements of large faults that do not require a lot of gain. A great deal of noise reduction can be made using the NOISE FILTER control. Send your instrument to be serviced when possible. 1. Set the PULSE WIDTH to 2 ns. Using the $\frac{\Delta}{\nabla}$ POSITION control and
VERT SCALE control, set the gain to 57 dB with the waveform centered vertically in the display. Figure 2-8: Waveform with Gain at 57 dB - 2. Press MENU. - **3.** Using the $\frac{\Delta}{\nabla}$ POSITION control, select *Diagnostics Menu*. - **4.** Press MENU again. - **5.** Using the $\frac{\Delta}{2}$ POSITION control, select Service Diagnostic Menu. - **6.** Press MENU again. - 7. Using the $\frac{\Delta}{\nabla}$ POSITION control, select *Noise Diagnostics*. - **8.** Press MENU again and follow the instructions on the display. **9.** Exit from *Noise Diagnostics*, but do not exit from the *Service Diagnostic Menu* yet. #### 4. Offset/Gain Check If the instrument fails this check, it should not be used for loss or impedance measurements. Send it to be serviced when possible. **1.** In the *Service Diagnostic Menu*, select the *Offset/Gain Diagnostic* and follow the directions on the display. There are three screens of data presented in this diagnostic. The Pass/Fail level is 3% for any single gain setting tested. **2.** Exit from *Offset/Gain Diagnostic*, but do not leave the *Service Diagnostic Menu* yet. #### 5. Impedance Check If the instrument fails this check, it should not be used for loss or impedance measurements. **1.** In the *Service Diagnostic Menu*, select the *Impedance Diagnostic* and follow the directions on the screen. Passable tolerances are: | 50Ω | 47.0 to $50.0~\Omega$ | |--------------|-------------------------| | 75Ω | 71.0 to $75.0~\Omega$ | | 93 Ω | 88 to 93 Ω | | 125Ω | 118 to 125 Ω | **2.** Exit from the *Impedance Diagnostic*, but do not leave the *Service Diagnostic Menu* yet. # 6. Sampling Efficiency Check If the instrument fails this check, the waveforms might not look normal. If the efficiency is more than 100%, the waveforms will appear noisy. If the efficiency is below the lower limit, the waveform will take longer (more pixels) to move from the bottom to the top of the reflected pulse. This smoothing effect might completely hide some faults that would normally only be one or two pixels wide on the display. - **1.** In the *Service Diagnostic Menu*, select *Sampling Efficiency* and follow the directions on the screen. - **2.** When done with the test, press the MENU button repeatedly until the instrument returns to normal operation. #### 7. Aberrations Check If the aberrations are too large, they can be confused with minor faults in the cable near the instrument. **1.** Turn the [¬]POSITION control counterclockwise until the display distance window reads less than 20.00 ft (6.10 m). 2. Set the DIST/DIV control to 1 ft/div (0.25 m/div). Figure 2-9: Distance at -2.00 ft - 3. Turn the $\triangleleft \triangleright$ POSITION control counterclockwise until the display distance window reads -2.00 ft (-0.62 m). - **4.** Set the 1503C front-panel controls: | IMPEDANCE | 50Ω | |--------------|-------------| | NOISE FILTER | 1 avg | | VERT SCALE | 0.00 dB | | PULSE WIDTH | 2 ns | | Vp | .99 | - 5. Connect the 50 Ω precision terminator to the front panel. - **6.** Turn the NOISE FILTER control completely counterclockwise to the VERT SET REF position. - 7. Use VERT SCALE to increase the height of the pulse to four major divisions. Figure 2–10: Pulse Adjusted to Four Major Divisions in Height - **8.** Press STORE. - **9.** Turn the NOISE FILTER control back to 1 avg. - **10.** Place the baseline of the waveform on the center graticule using the ${}^{\Delta}_{\nabla}$ POSITION control. - 11. Increase VERT SCALE to 25.00 dB - 12. Using the $\triangleleft \triangleright$ POSITION control, verify that the aberrations are less than four divisions high out to 10 feet (3.05 m). Figure 2-11: Waveform Centered, Cursor at 10.00 ft - 13. Return the cursor to -2.00 ft (-0.61 m). - 14. Turn NOISE FILTER back to VERT SET REF. - **15.** Set the DIST/DIV to 2 ft/div (0.5 m/div). - 16. Turn PULSE WIDTH to 10 ns. - 17. Adjust the pulse height to four major divisions. Figure 2–12: Pulse Adjusted to Four Major Divisions in Height - 18. Press STORE. - 19. Return the NOISE FILTER control to 1 avg. - **20.** Place the baseline of the waveform on the center graticule using the $^{\Delta}_{\nabla}$ POSITION control. - 21. Increase VERT SCALE to 30.00 dB. - 22. Using the ^{⊲▷} POSITION control, verify that the aberrations are less than four divisions high out to 30 feet (9.15 m) Figure 2–13: Aberrations Less Than Four Divisions Out to 30.00 ft - **23.** Return the cursor to –2.00 ft (–0.61 m). - 24. Turn NOISE FILTER back to VERT SET REF. - 25. Set the DIST/DIV to 50 ft/div (10 m/div). - 26. Turn PULSE WIDTH to 100 ns. - **27.** Adjust the pulse height to four major divisions. Figure 2–14: Pulse Adjusted to Four Major Divisions in Height - 28. Press STORE. - 29. Return the NOISE FILTER control to 1 avg. - **30.** Place the baseline of the waveform on the center graticule using the ${}^{\triangle}_{\nabla}POSITION$ control. - 31. Increase VERT SCALE to 30.00 dB. - **32.** Using the ^{⊲▷} POSITION control, verify that the aberrations are less than four divisions high out to 300 feet (91.50 m). Figure 2–15: Aberrations Less Than Four Divisions Out to 300.00 ft - 33. Return the cursor to -2.00 ft (-0.61 m). - 34. Turn NOISE FILTER back to VERT SET REF. - **35.** Set the DIST/DIV to 500 ft/div (10 m/div). - **36.** Turn PULSE WIDTH to 1000 ns. - **37.** Adjust the pulse height to four major divisions. Figure 2–16: Pulse Adjusted to Four Major Divisions in Height - 38. Press STORE. - 39. Return the NOISE FILTER control to 1 avg. - **40.** Place the baseline of the waveform on the center graticule using the $\frac{\Delta}{\nabla}$ POSITION control. - 41. Increase VERT SCALE to 30.00 dB. - **42.** Using the [⊲] POSITION control, verify that the aberrations are less than four divisions high out to 3000 feet (915.00 m) Figure 2–17: Aberrations Less Than Four Divisions Out to 3000.00 ft #### **Conclusions** If the instrument failed Aberrations or Sampling Efficiency checks, it is probably still adequate for all but extremely minor fault measurements. If it failed the Horizontal Scale check, you should not use the instrument until the cause of the failure has been identified and corrected. All of the previous checks only test the major functional blocks of the instrument that could prevent you from being able to make measurements. It is possible for the front-panel controls or the LCD to have problems that would interfere with controlling or displaying measurements. Most problems of this type would become evident as you perform the checks. If you suspect a problem of this nature, you should have the instrument checked by a qualified service technician. If the instrument passed all of the previous checks, it is ready for use. If your instrument is equipped with Option 06 (Ethernet), refer to *Calibration*, Chapter 6. # **Specifications** The tables in this chapter list the characteristics and features that apply to this instrument after it has had a warm-up period of at least five minutes. The Performance Requirement column describes the limits of the Characteristic. Supplemental Information describes features and typical values or other helpful information. #### **Electrical Characteristics** | Characteristic | Performance Requirement | Supplemental Information | |------------------------------------|---|---| | Test Pulse | Calculated 2 no. 10 no. 100 no. 1000 | Managed at helf also and Photo asket 31 | | Width | Selected: 2 ns, 10 ns, 100 ns, 1000 ns | Measured at half sine amplitude point with matching termination. | | Accuracy | 2 ns ± 1 ns; 10 ns, 100 ns, 1000 ns $\pm 10\%$ | matering terminates. | | Pulse Amplitude
Terminated | -2.5 VDC ±10% for 10 ns, 100 ns, 1000 ns;
2 ns ±20% | | | Unterminated | $-5.0 \text{ VDC } \pm 10\% \text{ for 10 ns, 100 ns, 1000 ns}$ | Internal cable length prevents 2 ns pulse from reaching full unterminated voltage | | Pulse Shape | 1/2 sine | | | Pulse Output Impedance
Accuracy | Selected: 50 Ω , 75 Ω , 93 Ω , 125 Ω 1% | | | Pulse Repetition Time | 350 µs nominal | | | Vertical | | | | Scale | 0 dB to 63.75 dB gain | 256 values at 0.25 dB increments | | Accuracy | ± 3% | | | Set Adjustment | Set incident pulse within $\pm 3\%$ | Combined with vertical scale control. | | Vertical Position | Any waveform point moveable to center screen. | | | Displayed Noise | | With matching terminator at panel. Beyond three test pulse widths after test pulse. | | Random | $\leq \pm 1.0$ division peak with 57 dB gain, filter set to 1 $\leq \pm 1.0$ division peak with 63 dB gain, filter set to 8 | three test pulse within after test pulse. | | Aberrations | \leq -30 dB p-p for 10 ns, 100 ns, 1000 ns test pulse \leq -25 dB p-p for 2 ns test pulse | Within three test pulse widths after test pulse. dB is relative to test pulse. | (continued next page) | Characteristic | Performance Requirement | Supplemental Information | |------------------------------|--|--| | Cable Connection
Coupling | Capacitively coupled | | | Max Input Susceptibility | \pm 400 V (DC + peak, AC at maximum frequency of 440 Hz). No damage with application for up to 30 seconds (might affect measurement capability). | | | Distance Cursor Resolution | 1/25 of 1 major division | | | Cursor Readout
Range | $-2 \text{ ft to } \ge 50,000 \text{ ft } (-0.61 \text{ m to } 15,230 \text{ m})$ |
5 digit readout | | Resolution | 0.04 ft | | | Accuracy | Within 2% \pm 0.02 ft at 1 ft/div | Vp must be set within $\pm 0.5\%$ of cable | | Horizontal
Scale | 1 ft/div to 5000 ft/div (0.25 m/div to 1000 m/div)
12 values: 1, 2, 5 sequence | | | Range | 0 to 50,000 ft (0 to 10,000 m) | | | Horizontal Position | Any distance to full scale can be moved on screen | | | Vp
Range | 0.30 to 0.99 | Propagation velocity relative to air | | Resolution | 0.01 | | | Accuracy | within ±1% | | | Custom Option Port | | Tek chart recorder is designed to operate with the 1503C. Produces a high resolution thermal dot matrix recording and waveform and control values. | | Line Voltage | 115 VAC (90 to 132 VAC) 45 to 440 Hz
230 VAC (180 to 250 VAC) 45 to 440 Hz | Fused at 0.3 A
Fused at 0.15 A | | Battery Pack
Operation | 8 hours minimum, 30 chart recordings maximum | +15° C to +25° C charge and discharge temper-
ature, LCD backlight off. Operation of instru-
ment with backlight on or at temperatures below
+10° C will degrade battery operation specifica-
tion | | Full Charge Time | 20 hours maximum | uon | | Overcharge Protection | Charging discontinues once full charge is attained | | | Discharge Protection | Operation terminates prior to battery damage | | | Charge Capacity | 3.4 Amp-hours typical | | | Charge Indicator | Bat/low will be indicated on LCD when capacity reaches approximately 10% | | ### **Environmental Characteristics** | Characteristic | Performance Requirement | Supplemental Information | |-------------------------------|--|---| | Temperature
Operating | –10° C to +55° C | Battery capacity reduced at other than +15°C to +25°C | | Non-operating | -62° C to +85° C | With battery removed. Storage temp with battery in is –20° C to +55° C. Contents on nonvolatile memory (stored waveform) might be lost at temps below –40° C. | | Humidity | to 100% | | | Altitude
Operating | to 10,000 ft | MIL-T-28800C, Class 3 | | Non-operating | to 40,000 ft | | | Vibration | 5 to 15 Hz, 0.06 inch p–p
15 to 25 Hz, 0.04 inch p–p
25 to 55 Hz, 0.013 inch p–p | MIL-T-28800C, Class 3 | | Shock, Mechanical | | | | Pulse | 30 g, 11 ms 1/2 sine wave, total of 18 shocks | MIL-T-28800C, Class 3 | | Bench Handling | | MIL-STD-810, Method 516, Procedure V | | Operating | 4 drops each face at 4 inches or 45 degrees with opposite edge as pivot | Cabinet on, front cover off | | Non-operating | 4 drops each face at 4 inches or 45 degrees with opposite edge as pivot. Satisfactory operation after drops. | Cabinet off, front cover off | | Loose Cargo Bounce | 1 inch double-amplitude orbital path at 5 Hz, 6 faces | MIL-STD-810, Method 514, Procedure XI,
Part 2 | | Water Resistance
Operating | Splash-proof and drip-proof | MIL-T-28800C, Style A
Front cover off | | Non-operating | Watertight with 3 feet of water above top of case | Front cover on | | Salt Atmosphere | Withstand 48 hours, 20% solution without corrosion | | | Sand and Dust | Operates after test with cover on, non-operating | MIL-STD-810, Method 510, Procedure I | | Washability | Capable of being washed | | | Fungus Inert | Materials are fungus inert | | (continued next page) ### **Certifications and Compliances** | Category | Standard or description | | |--|--|--------| | EC Declaration of Conformity – EMC | Meets intent of Directive 89/336/EEC for Electromagnetic Compatibility. Compliance was demonstrated to the following specifications as listed in the Official Journal of the European Union: | | | | EN 50081-1 Emissions: EN 55022 Class B Radiated and Conducted Emissions EN 60555-2 AC Power Line Harmonic Emissions | | | | EN 50082-1 Immunity: IEC 801-2 IEC 801-3 IEC 801-4 IEC 801-5 Power Line Surge Immunity Electrostatic Discharge Immunity RF Electromagnetic Field Immunity Electrical Fast Transient/Burst Immunity Power Line Surge Immunity | | | Australia/New Zealand
Declaration of Conformity – EMC | Complies with EMC provision of Radiocommunications Act per the following standard(s): | | | | AS/NZS 2064.1/2 Industrial, Scientific, and Medical Equipment: 1992 | | | EMC Compliance | Meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility when it is used with the product(s) stated in the specifications table. Refer to the EMC specification published for the stated products. May not meet the intent of the directive if used with other products. | | | FCC Compliance | Emissions comply with FCC Code of Federal Regulations 47, Part 15, Subpart B, Class A Lin | nits. | | Safety Standards | | | | U.S. Nationally Recognized
Testing Laboratory Listing | UL1244 Standard for electrical and electronic measuring and test equip | pment. | | Canadian Certification | CAN/CSA C22.2 No. 231 CSA safety requirements for electrical and electronic measuring and test equipment. | | | European Union Compliance | | | | | EN 61010-1/A2 Safety requirements for electrical equipment for measurement, control, and laboratory use. | | | Additional Compliance | IEC61010-1/A2 Safety requirements for electrical equipment for measurement control, and laboratory use. | t, | | Safety Certification Compliance | | | | Equipment Type | Test and measuring | | | Safety Class | Class 1 (as defined in IEC 61010-1, Annex H) – grounded product | | | Overvoltage Category | Overvoltage Category II (as defined in IEC 61010-1, Annex J) | | | Pollution Degree | Pollution Degree 3 (as defined in IEC 61010-1). | | | Installation (Overvoltage)
Category | Terminals on this product may have different installation (overvoltage) category designations. The installation categories are: | | | | CAT III Distribution-level mains (usually permanently connected). Equipment at this level is typically in a fixed industrial location. CAT II Local-level mains (wall sockets). Equipment at this level includes appliances, portable tools, and similar products. Equipment is usually cord-connected. | | | | | | | | CAT I Secondary (signal level) or battery operated circuits of electronic equipment. | | (continued next page) | Category | Standard or description | Standard or description | | |------------------|----------------------------|--|--| | Pollution Degree | Typically the internal env | A measure of the contaminates that could occur in the environment around and within a product. Typically the internal environment inside a product is considered to be the same as the external. Products should be used only in the environment for which they are rated. | | | | Pollution Degree 1 | No pollution or only dry, nonconductive pollution occurs. Products in this category are generally encapsulated, hermetically sealed, or located in clean rooms. | | | | Pollution Degree 2 | Normally only dry, nonconductive pollution occurs. Occasionally a temporary conductivity that is caused by condensation must be expected. This location is a typical office/home environment. Temporary condensation occurs only when the product is out of service. | | | | Pollution Degree 3 | Conductive pollution, or dry, nonconductive pollution that becomes conductive due to condensation. These are sheltered locations where neither temperature nor humidity is controlled. The area is protected from direct sunshine, rain, or direct wind. | | | | Pollution Degree 4 | Pollution that generates persistent conductivity through conductive dust, rain, or snow. Typical outdoor locations. | | ### **Physical Characteristics** | Characteristic | Description | |--|----------------------| | Weight | | | without cover | 14.5 lbs (6.57 kg) | | with cover | 16 lbs (7.25 kg) | | with cover, chart recorder, and battery pack | 20 lbs (9.07 kg) | | Shipping Weight | | | domestic | 25.5 lbs (11.57 kg) | | export | 25.5 lbs (11.57 kg) | | Height | 5.0 inches (127 mm) | | Width | | | with handle | 12.4 inches (315 mm) | | without handle | 11.8 inches (300 mm) | | Depth | | | with cover on | 16.5 inches (436 mm) | | with handle extended to front | 18.7 inches (490 mm) | ### **Options and Accessories** The following options are available for the 1503C MTDR: #### Option 04: YT-1 Chart Recorder Option 04 instruments come equipped with a chart printer. Refer to the *YT-1/YT-1S* Chart Recorder Instruction Manual that comes with this option for instructions on operation, paper replacement, and maintenance. #### **Option 05: Metric Default** Option 05 instruments will power up in the metric measurements mode. Standard measurements may be selected from the menu, but metric will be the default. #### Option 06: Ethernet® Option 06 instruments include circuitry that allows the 1503C to test an Ethernet bus using time-domain reflectometry with minimum disruption to the IEEE 802.3 protocol. #### What is Ethernet? Ethernet was invented by the Xerox Corporation in 1973 to allow various data devices to use a common communications bus. In an Ethernet system, signals flow in all directions and the transceivers attached to the Ethernet receive all transmissions. **Ethernet cable** is typically 50Ω with 50Ω terminators at each end to prevent
signal reflections. Reflections can interfere with transmissions sent out by the system. **ThinWire, Cheapernet, and Thin Ethernet** are variations of Ethernet. These are usually used as a branch of the main network with a limited number of stations. They use a more flexible cable and are usually connected to each Media Access Unit (MAU) with a T-connector instead of a tap. **Segments** are the smaller sub-networks in an Ethernet system. Each segment can be up to 500 meters long and have up to 100 transceiver taps. Each tap must have at least 2.5 meters of cable between itself and the next tap. 1503C MTDR Service Manual 4–1 Figure 4-1: A Typical Ethernet System **Transceivers** transmit data to and from the stations on the Ethernet bus. The typical Ethernet data rate is 10 million bits per second. At each tap is a transceiver (MAU) sending and receiving this data. They also provide electrical isolation between the coaxial cable and the station as well as housing the electronics that detect carrier signals and recognize the collision of two signals. **Taps** are what the transceivers are attached to. A **bridge** connects several network segments. Depending on the hardware used (e.g., fiber optics), a network might extend up to 22,000 meters. **Repeaters** are used to increase the effective length of a cable to allow more transceivers. Due to distance limitations, two transceivers can have a maximum of two repeaters between them. **Servers** let a network share resources, such as terminals, disks, printers, etc. The 1503C with Option 06 allows testing of an Ethernet bus while the network is active. This is important because some installations might be interactive with other installations that are dependent on the Ethernet. Physically, Option 06 is a piggyback circuit board attached to the Sampler/Pulser board in the 1503C. A special EPROM replaces the standard EPROM on the main board, allowing Option 06 to be transparent to the standard instrument, but accessible through the *Ethernet Menu* and the *Setup/Acquisition Menu*. Option 06 performs three functions: - \blacksquare A 50 Ω terminator for the network - Generates a DC signal that emulates the -1.05 VDC carrier signal - Generates a DC signal that emulates the −1.7 VDC collision signal. ### Test Procedures for a Working Network Before Starting, here are some things you should know to make Ethernet tests easier: - You need Option 06 for testing an active network. - Make measurements from the end of a segment. - If possible, isolate the segment you plan to test. - Use the shortest pulse width possible. - Do not use Auto pulse width mode. If it selects the 100 ns or 1000 ns pulse, it might disrupt traffic on working networks. - Use the simplest possible test first. - Operate the 1503C on AC power when using the option chart printer. - Changes made in the menus do not take effect until the instrument is returned to normal operation. This prevents erroneous menu selections from creating disruptions. - Have the network documentation ready. If available, have prior TDR profiles of the network that you will be comparing. 1503C MTDR Service Manual 4–3 - If possible, turn off repeaters and bridges to other networks to minimize the extent of a possible disruption the 1503C might cause. - If you use a jumper cable, make sure that it matches the network cable impedance. The three-foot jumper furnished with the instrument is 50Ω . #### Introduction The IEEE 802.3 standard recommends only one earth ground per segment. When connected to AC power, the 1503C provides an earth ground to the coaxial shield. There is no connection to ground when the 1503C is used with the optional battery pack and the AC power cord is disconnected. The first test usually run on an active network is the normal sweep with the 2 ns or 10 ns pulse and the DC 50Ω termination is: On from the Ethernet Menu. This test provides basic TDR tests with a 50Ω termination for the net. If the network traffic is low (3 to 4%), this test is very effective. The 2 ns and 10 ns pulses are narrower than the time occupied by a single bit and usually will not cause any collisions. All other tests in the Ethernet Menu have potentially destructive effects on working networks. **CAUTION.** The test just described should find most problems. Before going any further, know what you are doing. Carrier and collision tests have the potential of causing problems on an active network. Read the warnings and instructions carefully. Try to limit tests to one segment during times of low traffic. The second test is the *Single Sweep with Carrier is: Off/On*. This test asserts the carrier signal of -1.05 V, then single-sweeps the network and drops the carrier signal. The test occupies the network for one to 20 seconds, depending on the NOISE FILTER setting. The third test, *Carrier Test is: Off/On*, helps track down transceivers suspected if ignoring the carrier sense signal. This test holds the carrier signal of –1.05 V, turns off the pulse, and turns on MAX HOLD. The 1503C then acts as a traffic monitor. If spikes appear on the display, it is likely a transceiver is not responding to the carrier signal and is "babbling." #### **Basic Test Procedure** The following procedure describes the fundamental tests with 50Ω DC termination is: On. When performing other Ethernet tests, use essentially the same procedure. A full description of individual tests, including custom tests, follows: If you wish to disconnect and reconnect the 1503C to the cable segment, use a BNC T-connector between the instrument and a 50 Ω jumper cable (e.g., RG-58U). To one side of the T-connector, connect a 50 Ω terminator (the double termination is about a 25 Ω mismatch – much less likely to cause problems than an open circuit). The terminator can be removed during testing, allowing the 1503C to become the 50 Ω load. When removing the 1503C (or there is a power failure), the terminator should be reconnected, restoring the normal 50 Ω load for the network. The BNC T-connector also allows another point of access for an oscilloscope if you need to look for signal quality or noise levels. Once the 1503C 50 Ω termination has been turned on, tests are similar to standard measurements on an coaxial 50 Ω cable. Remember to use only the 2 ns or 10 ns pulse widths. However, the waveforms might be a little different, due to traffic on the network. Following are suggestions on how to set up test fixtures that will provide flexibility and provide network safety in case of power interruptions to the 1503C. Figure 4–2: N-Type Male T-Connector Figure 4–3: N-Type Female T-Connector **1.** Before removing the Ethernet cable terminator, make sure you have the correct adapters and cables ready. 1503C MTDR Service Manual 4–5 2. Set the 1503C front-panel controls: $\begin{array}{ll} \text{CABLE} & \text{see below} \\ \text{IMPEDANCE} & 50 \ \Omega \\ \text{NOISE FILTER} & 1 \ \text{avg} \\ \text{VERT SCALE} & \text{see below} \end{array}$ DIST/DIV appropriate setting for cable length PULSE WIDTH 2 ns or 10 ns * Vp to cable specifications POWER ON (see below) **CAUTION**. * DO NOT use the Auto pulse width mode. The longer pulses will cause problems on working networks. - **3.** Request the system administrator to notify network users of possible disruptions. - **4.** Using the POSITION control, access the *Ethernet Menu*. - **5.** Scroll to 50Ω DC Termination is: Off and turn it On. - **6.** Return to normal operation. - 7. As previously described, connect one end of a 50 Ω jumper cable to the front-panel CABLE connector, then connect the other end to one side of the BNC T-connector (see Figures 4–2 and 4–3). - **8.** Connect the Ethernet cable to the BNC T-connector. - **9.** Remove the 50 Ω terminator. At this point, you are testing on an active network. **CAUTION.** The 50 Ω termination of the 1503C is not maintained with the power off. In case of power failure, immediately replace the 50 Ω terminator on the BNC *T-connector*. **10.** With the NOISE FILTER set at 1 avg, traffic will appear as large random noise spikes. If the traffic is severe enough to make measurements difficult, increase the NOISE FILTER setting. **NOTE**. The traffic on the display has no relationship to where it came from on the cable. In fact, traffic can appear on the display beyond the end of the cable. 11. A VERT SCALE setting of 30 dB will normally allow you to see normal taps at the near end of a network. Greater distances might require more gain, depending on the loss of the cable and the pulse width. ### Descriptions of Test in the Ethernet Menu The following tests are composed of several functions found in the *Acquisition Control Menu*. These combinations are displayed in the *Ethernet Menu* as a user convenience. Most of the tests in the *Ethernet Menu* can be recreated or modified. That is explained at the end of this section. Changes made in the *Ethernet Menu* will affect some of the *Setup Menu* and *Acquisition Control Menu* functions. For example, if *Carrier Test is: Off/On* is turned on, the 50 Ω termination will also be turned on because it is necessary for the carrier test to work. #### 50 Ω DC Termination is: Off/On **CAUTION.** This must be on when testing on a working network or reflections will cause collisions on the network. This entry is a duplicate of the entry in the Setup Menu/Acquisition Control Menu. Its function is to allow direct control of the termination inside the 1503C. With the 50 Ω DC termination on, the 1503C will function normally as a cable tester. This is usually the only test needed to check a network cable. **CAUTION.** The 100 ns and 1000 ns pulses might cause collisions. Longer pulses are more likely to generate collisions than shorter pulses. On networks with traffic less than 3 to 4%, a 2 ns pulse causes no measurable
change in network statistics. Even on heavily tapped cables, the 2 ns pulse can usually be used for distances to 700 feet. The 10 ns pulse should be suitable for those longer segments that still fall within the 802.3 specifications (under 500 meters). #### Single Sweep with Carrier is: Off/On **CAUTION**. This can interrupt prior traffic and cause late collisions. It can also disrupt devices or applications that require periodic network traffic. When this test is selected, the 1503C will assert a –1.05 VDC signal on the net long enough to take a single waveform at the NOISE FILTER level selected. This is the equivalent to the average voltage level of a normal transmission and should cause the transceivers to assert Carrier Detect. This has the effect of causing most devices on the net to defer transmission until the 1503C is finished. This takes from about one to 20 seconds, depending on noise averaging, and reduces the traffic displayed on the waveform. 1503C MTDR Service Manual 4–7 **NOTE**. Movement of any control that would change or move the waveform will start a new sweep and assert the -1.05 VDC. For example, if you use the vertical position control continuously for 20 seconds, you would be asserting the false traffic for that duration and you are likely to disrupt the network. #### Carrier Test is: Off/On **CAUTION**. This carrier signal will stop traffic on the network. This might abort many application programs and might cause communications problems. This test asserts the -1.05 VDC signal on the network, turns off the normal 1503C pulse, and sets up the MAX HOLD mode. This is intended to help find transceivers that have a faulty Carrier Detect. To use this test, have the network prepared for disruption and turn the test on via the *Ethernet Menu*. Any traffic observed is being transmitted in spite of a signal simulating a carrier. This might be due to a transceiver not asserting its carrier detect line, a host not reading its carrier detect line, or some other reason. This is not unusual with some equipment. One way to isolate which units are doing this is to disconnect them one at a time until it stops. #### **Collision Test is: Off/On** **CAUTION.** The collision signal will stop traffic on the network. This might abort many application programs and might cause communications problems. This test is similar to the carrier test except that it asserts a -1.7 VDC signal to simulate a collision on the network. ### Descriptions of Tests in the Setup Menu/ Acquisition Control Menu The entries in this menu allow you to set up custom tests on networks in addition to the preset ones in the *Ethernet Menu*. This is intended for users who are familiar enough with Ethernet to anticipate the results. Changes in this menu can affect the state of other entries that are mutually exclusive or necessary for the chosen entry. For example, turning on the *Collision Output Signal is: Off/On* will also turn off the carrier output signal because only one voltage can be sent out. Only the function of the entries unique to Option 06 will be explained. For the others, refer to the *Operating Instructions* chapter of this manual. #### **50 Ω DC Termination is: Off/On** **CAUTION.** This must be on for use on a working network or reflections will cause collisions on the network. This entry is a duplicate of the entry in the Ethernet Menu. Its function is to allow direct control of the low frequency termination inside the 1503C. With the $50 \Omega DC$ termination is: On, the 1503C will functions normally to test the cable. This is usually the only test needed to check a network cable. #### Carrier (-1.05V) Output Signal is: Off/On **CAUTION.** The carrier signal will stop most traffic on the network. This might abort many application programs and might cause communications problems. When this test is on, the 1503C will assert a -1.05 VDC level on a 50 Ω load (-2.1 VDC open circuit). This signal is intended to be equivalent to the average of a standard Ethernet transmission and should trigger the carrier detect circuit on all the transceivers. Because most applications will defer transmission when this signal is present, it can be used to test transceivers and systems, or to reduce traffic for 1503C testing. #### Collision (-1.7V) Output Signal is: Off/On **CAUTION.** The collision signal will stop most traffic on the network. This might abort many application programs and might cause communications problems. When this test is on, the 1503C will assert a -1.7 VDC level on a 50 Ω load (-3.4 VDC open circuit). This signal is intended to be equivalent to the average of two colliding Ethernet transmissions and should trigger the collision detect circuit on all the transceivers. This should cause applications to back off and retry, then eventually abort, as defined in the 802.3 standard. Therefore, it can be used to test units that do not respond to this signal or to stop traffic for TDR testing. #### **Customizing Your Own Tests** Access the *Acquisition Control Menu* located under the *Setup Menu*. The various tests listed can be used in any combination. Remember that the tests will not be activated until you return the 1503C to normal operation, so any combination can be chosen, then activated. 1503C MTDR Service Manual 4–9 #### **Waveform Signatures** By now you probably have a good idea what traffic looks like on the display and how you can use the NOISE FILTER to reduce it. Other signatures might also appear on the display. **Terminators** are small reflections seen as stationary bumps and dips. A perfect terminator would not reflect any energy, and theoretically would be invisible on the 1503C display. Because of small impedance differences between the cable and the terminator, a small amount of energy will be reflected. The signature of a terminator tends to go either up or down. Because a terminator absorbs nearly all the energy of a pulse, the normal ripples in the waveform (minor changes in impedance) will not be present after a terminator. The point where the waveform becomes flat is a clue to the location of a terminator. **Taps** commonly have a characteristic down-then-up reflection. The TDR pulse will continue to travel past a tap because only part of the pulse's energy is reflected. This allows the 1503C to read signatures well beyond taps. Following are examples of tests made on two Ethernet systems: Figure 4–4: System 1 – Tap Hidden by Traffic (1 avg, 50 ft/div, 35 dB) Figure 4–5: System 1 – Traffic and Tap Nearly Identical (4 avg, 50 ft/div, 35 dB) Figure 4–6: System 1 – Tap Becoming Visible (16 avg, 50 ft/div, 35 dB) Figure 4–7: System 1 – Tap Quite Visible (128 avg, 50 ft/div, 35 dB) Figure 4–8: System 1 – No Traffic (1 avg, 50 ft/div, 35 dB) Figure 4–9: System 1 – Tap Expanded, No Traffic (1 avg, 2 ft/div, 35 dB) Figure 4–10: System 2 – Cable w/ Revision One Repeater * (1 avg, 200ft/div, 2.25dB) *Revision One repeaters must sense collisions and place a jam signal on both segments. When using the carrier sense voltage level while sending out pulses (e.g., Single Sweep with Carrier is: On) the pulses might exceed the collision or traffic thresholds of the repeater, causing it to send back jamming packets that are synchronized with the 1503C. This creates an unusual waveform that looks similar to data. As a rule, repeaters should be shut down prior to testing a segment to prevent such occurrences. Figure 4–11: System 2 – First Tap, No Traffic (1 avg, 1 ft/div, 44.5 dB) Figure 4–12: System 2 – Same Tap with 5% Traffic (1 avg, 1 ft/div, 44.5 dB) Figure 4–13: System 2 – Same Tap, Increased Averaging (16 avg, 1 ft/div, 44.5 dB) Figure 4–14: System 2 – Farther Out, More Gain (128 avg, 10 ft/div, 53.5 dB) Figure 4–15: System 2 – 1000-ft Cable at 10 ns (128 avg, 100 ft/div, 43.75 dB) Figure 4–16: System 2 – Previous Waveform Expanded (128 avg, 20 ft/div, 54.75 dB) Figure 4–17: System 2 – Next Group of Taps (128 avg, 20 ft/div, 54.75 dB) Figure 4–18: System 2 – Group of Taps Expanded (128 avg, 10 ft/div, 54.75 dB) Figure 4–19: System 2 – Another Group of Taps (128 avg, 10 ft/div, 54.75 dB) Figure 4–20: System 2 – End of Cable (128 avg, 20 ft/div, 61.25 dB) ## **Electrical Characteristics** Following are the specifications for the Ethernet board: | Characteristic | Performance Requirement | Supplemental Information | |---------------------------|---|---| | DC Termination | 50 Ω, ±1 Ω | See typical frequency response curve below this table to estimate at other frequencies. Once the termination is turned on, it will remain on until specifically turned off by the operator, at which time a warning to remove the 1503C from the network will be shown on the display. Leaving the TDR on the network with the termination turned off will cause traffic disruption and errors. | | DC Voltage Offsets | 0.0 V \pm 0.02 V
-1.05 VDC and -1.7 VDC
\pm 0.15 V into 50 Ω | AC pulse voltage is present on top of DC offsets while measuring. Voltages only asserted when 50 Ω termination is on. | | Overvoltage
Protection | | Circuit cuts out leaving standard 1503C protection for voltages greater than \pm 11 V. | | Floating Ground | | Only when used with battery pack. IEEE 802.3 specifies a single ground on the bus. | Figure 4–21: Typical Frequency Response Curve with Ethernet Option 06 # Option 07: YT-1S Chart Recorder Option 07 instruments come equipped with a splashproof chart printer. Refer to the *YT–1/YT–1S Chart Recorder Instruction Manual* that comes
with this option for instructions on operation, paper replacement, and maintenance. ## Option 08: Token Ring Adapter Option 08 instruments come with an adapter that allows you to connect the 1503C to networks containing ECL connectors. The adapter isolates the receive pair from the transmit pair at the ECL connector and allows you to select one or the other to be routed to the input BNC connector on the 1503C. # **Option 09: Universal Service Ordering Code** Option 09 instruments come with an adapter that allows you to connect the 1503C to LANs using type RJ-45 connectors using the Universal Service Ordering Code. The adapter allows selection of each of the four twisted pairs. **CAUTION.** The RJ-45 USOC adapter (Option 09) is the same connector used for many telephone installations. Active telephone wires will have 40 to 60 VDC on one pair and this will destroy the 1502-series instrument. Do not use Option 09 with 1502, 1502B or 1502C instruments. # **Option 10: Token Ring Interface** Option 10 instruments come with an adapter that allows you to connect the 1503C to Token Ring networks via the MAU. 1503C MTDR Service Manual 4–17 # **Power Cord Options** The following power cord options are available for the 1503C TDR (for part numbers, refer to the end of the *Replaceable Mechanical Parts* list). Note that these options require inserting a 0.15 A fuse in the rear panel fuse holder. **NOTE**. The only power cord rated for outdoor use is the standard cord included with the instrument (unless otherwise specified). All other optional power cords are rated for indoor use only. **Option A1:** 220 VAC, 16 A, Universal Europe **Option A2:** 240 VAC, 13 A, United Kingdom Option A3: 240 VAC, 10 A, Australia Option A4: 240 VAC, 15A, North America Option A5: 240 VAC, 6 A, Switzerland ## **Accessories** The Standard and Optional accessory part numbers are provided at the end of the *Replaceable Mechanical Parts* list. #### **Standard Accessories** Internal lead–gel Battery Assembly Replacement Fuse (AC line fuse, 115 VAC) Replacement Fuse (AC line fuse, 230 VAC) Power Cord (outdoor rated) Option Port Cover Assembly 50Ω BNC Terminator BNC Connector, female-to-female 93 Ω 10-foot Test Cable (S/N \geq B010625) Connector, BNC female to Alligator Clips (S/N ≥ B010625) BNC Connector male to N female (w/ Option 06 only) 50 Ω 3-foot Test Cable (w/ Option 06 only) Operator Manual Slide Rule Calculator Accessory Pouch ## **Optional Accessories** Service Manual (B01 instrument) Service Manual (B02 instrument) **Battery** Chart Recorder, YT-1S Chart Paper, single roll Chart Paper, 25-roll pack Chart Paper, 100-roll pack Cable, Interconnect, 360 inches Connector, BNC male to BNC male Connector, BNC female to Alligator Clip (S/N \geq B010625) Connector, BNC female to Hook-tip Leads Connector, BNC female to Dual Banana Plug Connector, BNC male to Dual Binding Post Connector, BNC male to N female Connector, BNC female to N male Connector, BNC female to UHF male Connector, BNC female to UHF female Connector, BNC female to Type F male Connector, BNC male to Type F female Connector, BNC female to GR Connector, BNC male to GR Precision 50 Ω Cable (S/N \geq B010625) Terminator, 75 Ω BNC Adapter, Direct Current **Isolation Network** Pulse Inverter Token Ring Network Adapter Twisted Pair Adapter – USOC Adapter Star LAN Adapter Token Ring Interface # **Circuit Descriptions** ### Introduction This chapter describes how the instrument works. First is a circuit overview and how it relates to the block diagram (Figure 5–1, next page). Following that are the separate sections of the instrument, discussed in detail. The 1503C uses time-domain reflectometry techniques to detect and display the impedance characteristics of a metallic cable from one end of the cable. This is accomplished by applying a narrow pulse to the cable and monitoring the resulting voltage over a period of time. If the cable has a known propagation velocity, the time delay to a particular reflection can be interpreted in cable distance. Amplitude of the reflected voltage is a function of the cable impedance and the applied pulse and, therefore, can be interpreted in dB or in rho. The 1503C instrument is comprised of several subsections, as shown in the block diagram (Figure 5–1). These are organized as a processor system, which controls several peripheral circuits to achieve overall instrument performance. The processor system reads the front-panel control settings to determine the cable information that you selected for viewing. Distance settings are converted to equivalent time values and loaded into the timebase circuits. The timebase generates repetitive strobe signals to trigger the pulser/sampler circuits. Pulse strobes cause a single pulse to be applied to the cable under test. Each sampler strobe causes a single sample of the cable voltage to be taken during a very short interval. The timebase precisely controls the time delay of the sample strobe relative to the pulse strobe. When many sequential samples are recombined, a replica of the cable voltage is formed. This sampling technique allows extremely rapid repetitive waveforms to be viewed in detail. Figure 5-1: System Block Diagram Referring to the waveforms in Figure 5–2, cable voltage waveforms are shown at the top. Each pulse is the result of a test pulse from the pulse generator and all pulses are identical. At time delays $(t_n, t_{n+1}, t_{n+2}, \text{etc.})$ after the pulses begin, a sample of the pulse amplitude is taken. Each of these samples is digitized and stored in the processor until sufficient points are accumulated to define the entire period of interest. The samples are then processed and displayed at a much slower rate, forming the recombined waveform as shown. This process allows the presentation of waveforms too rapidly to be viewed directly. Figure 5-2: Waveform Accumulation Diagram Voltage samples from the pulser/sampler are combined with a vertical position voltage derived from the front-panel control, then amplified. The amplifier gain is programmed by the processor to give the selected vertical sensitivity. Each amplified sample voltage is then digitized by an analog-to-digital converter and stored in the processor memory. When the processor has accumulated sufficient samples (251) to form the desired waveform, the samples are formatted. This formatted data is then transferred to the display memory. The display logic routes the data to each pixel of the LCD, where each digital data bit determines whether or not a particular pixel is turned on or off. Between each waveform, samples are taken at the leading edge of the 2 μ s pulse for the timebase correction. Cursor and readout display data is determined by the processor and combined with the formatted sample waveform before it is sent to the display. # **Power Supply** #### Introduction The power supply consists of the following: - Primary Circuit - Pre-regulator - Battery Charger - Deep Discharge Protection - Port-regulator - DC-to-DC Converters The power supply converts either 115/230 VAC line power, or takes power from a lead-gel battery, and provides the instrument with regulated DC voltages. A block diagram of the power supply is shown in Figure 5–3. Figure 5–3: Power Supply Block Diagram Single-phase AC line voltage is applied to the power supply module through a power plug with internal EMI filter. The filtered line voltage is immediately fused, routed through a line selector switch and applied to a stepdown transformer. The transformer secondary voltage is rectified and power switched to power the post regulator. A switching pre-regulator reduces this voltage to +15.8 VDC and is used to power the battery charger. This voltage is also processed through a rectifier and power switch to power the post-regulator. If a battery is installed, the battery charger operates as a current source to provide a constant charging current. Voltage limiting circuits in the charger prevent battery overcharge by reducing the charge current as the battery voltages approaches +12.5 VDC. The battery is lead-gel, providing a terminal voltage of 10 to 12.5 VDC, with a nominal capacity of up to 2.0 Amp-Hours. It also is connected through a rectifier to the instrument's power switch and post-regulator. When the power switch is closed, an FET power transistor is momentarily turned on by the deep discharge protection circuit. If the voltage to the post-regulator rises to +9.7 VDC or greater, the transistor switch remains on. If at any time, the voltage drops below +9.7 VDC, the transistor turns off and the power switch must be recycled to restart the instrument. This operation prevents discharge of the battery below +10 VDC. Such a discharge could cause a reverse charge in a weak cell, resulting in permanent cell damage. The post-regulator is a boost switching regulator that increases its input voltage to a constant +16.2 VDC output. This voltage is supplied directly to the processor for large loads, such as the display heater, electroluminescent backlight, and options port. The post-regulator also supplies a DC-to-DC converter that generates ± 5 VDC and ± 15 VDC for use in the instrument. Status signals indicating whether the instrument is running on AC line voltage or the battery, and if the battery is approaching turn-off level, are supplied to the instrument by the deep-discharge protection circuits. #### **Primary Circuit** The AC line power is received by the connector in the EMI filter (FL1). This filter prevents high frequency signals generated in the instrument from being conducted back to the AC power line. The line voltage is fused (F101) and switched (S201) to the primary step-down transformer (T201). Both the switch and the fuse can be accessed from the outside of the instrument via covers on the rear of the cabinet. The primary of T201 is wound in two identical sections. These sections are connected
by S201 (in parallel for 110 VAC operation or in series for 220 VAC operation). The secondary of T201 is connected by a short two-wire cable to the Power Supply Board. The MOV (R101), across one of T201's primaries, protects the power supply if 220 VAC is applied while S2011 is in the 110 VAC position. Fuse F101 will open in this event. #### **Pre-Regulator** The secondary voltage is full-wave rectified by CR1010 and filtered by capacitor C1010. The large value of this capacitor allows it to supply energy to the instrument between half cycles of the line voltage. Integrated circuit U1010 is a pulse-width modulator switching regulator controller. It oscillates at approximately 70 kHz and provides drive pulses to switching transistors Q1010 and Q1011. The output pulses from these transistors are filtered to DC by flyback rectifier CR2010, choke L1010, and capacitors C2010 and C2012. The resulting +16.6 VDC is fed back to the regulator U1010 by voltage divider R1016 and R1015. It is then compared to a +2.5 VDC reference voltage from, U1011. To increase the output voltage, U1010 increases the pulse width of the drive to Q1010 and Q1011. To reduce the output voltage, U1010 decreases the pulse width to Q1010 and Q1011. This assures that a constant +16.6 VDC is maintained. Resistor R1010 acts as a current sensing shunt in the pre-regulator return line. In the event that a circuit fault draws excess current, the voltage developed across R1010 (and filtered by R1011, R1012, and C1011) will cause U1010 to reduce the pulse width of the pre-regulator. This protects the pre-regulator from damage due to overload. #### **Battery Charger** The battery charger consists of a linear regulator integrated circuit, U2010, and associated components. U2010 is connected as a current source, drawing current from the +15.8 VDC and supplying it to the battery through T2012. The voltage drop across T2012 is fed back to U2010 through diode CR2014 to control charging current at a nominal 150 mA. Diode CR2013 and voltage divider R2010 and R2011 provide a voltage clamp to U2010's feedback terminal to limit the maximum voltage that can be applied to the battery through CR2015. As the voltage R2012 and CR2015 approaches the clamp voltage, battery charging current is gradually reduced to trickle charge. Rectifier CR2015 prevents battery discharge through the charger when AC line voltage is not present. Rectifier CR2012 allows the battery to power the instrument when AC power is not present. # Deep Discharge Protection Pre-regulator or battery voltage is applied to Q2011 and Q2012 when the instrument power switch is pulled on. The rising voltage causes Q2011 and Q2012 to turn on due to the momentary low gate voltage while C2011 is charging. During this time, voltage comparator U1020A compares the switched voltage to a +2.5 VDC reference from U1022. If the voltage is greater than +9.7 VDC, U1020A turns on, drawing current through Q2010 and R2015 to keep the gates of Q2011 and Q2012 near ground and the transistors turned on. If the voltage is less than +9.7 VDC (or drops to that value later), U1020A and Q2010 turn off, allowing C2011 to charge to the input voltage and turn off Q2011 and Q2012. When turned off, the deep discharge protection circuit limits current drawn from the battery to only a few microamperes. #### Post-Regulator The post-regulator receives from +9.7 to +15.5 VDC and boosts it to +16.2 VDC by switching Q2022 on and off with a pulse-width modulated signal. When Q2022 is turned on, input voltage is applied across choke L2020, causing the current in L2020 to increase. When Q2022 is turned off, the stored energy in L2020 will cause the current to continue flowing through CR2021 to filter capacitor C2025. Due to its stored energy, the voltage developed across L2020 adds to the input voltage, allowing C2025 to be charged to a voltage greater than the input. The switching of Q2022 is controlled by pulse-width modulator U1023. The post-regulator output voltage is fed back to U1023 through R1025 and R1024 and compared to the +2.5 VDC reference from U1022. Low output voltage causes wider pulses to be supplied to Q2022, storing more energy in L2020 during each pulse. This results in a higher output voltage. High output voltage, however, reduces pulse width and reverses the preceding process. U1023 oscillates at approximately 80 kHz and supplies a synchronizing signal to the pre-regulator at that frequency when the instrument is operating on AC power. This raises the pre-regulator frequency to the same 80 kHz. This synchronization eliminates beat frequency interference between the two regulators. The synchronizing signal from U1023 is also supplied to Q2021, where it is amplified to CMOS levels and buffered by gate U2030A. The signal is then used to clock flip-flop U1024B to produce a 40 kHz square wave output at Q and \overline{Q} . These square waves are buffered by other U2030 inverters and used to drive DC-to-DC transistors Q2030 and Q2031. #### DC-to-DC Converter Transistors Q2030 and Q2031 apply push-pull power to the primary of T1030 at 40 kHz by switching the +16.2 VDC alternately between the primary windings. The resulting transformer secondary voltages are rectified and filtered by CR1034, C1032, C1033, and C1034 to produce +15 VDC and -15 VDC. Other secondary voltages are rectified and filtered by CR1030, CR1031, CR1032, CR1033, C1030, C1031, and C1037 to produce +5 VDC and -5 VDC. Diodes CR2031 and CR2030 rectify the primary voltage and clamp it to the voltage level that is across C2031. This prevents voltage transients caused by the rapid switching of Q2030 and Q2031 and prevents the leakage inductance of T1030's primary from creating excessive voltage stress. R2030 provides a discharge path from C2031. T1031 and C1036 provide additional filtering of the +16 VDC supply. ## **Processor System** #### Introduction The processor system consists of the following: - Microprocessor - Address Decoding and Memory - Interrupt Logic The processor system provides control and calculation functions for the instrument. A block diagram of the processor system is shown in Figure 5–4 (next page). 1503C MTDR Service Manual 5–7 An eight-bit microprocessor, clocked at 5 MHz, provides the processing capability in a bus-organized system. Instructions are read from the program memory EPROM and executed by the microprocessor to accomplish essentially all instrument functions. Random access memory is connected to the microprocessor through its data and address busses, allowing it to store and retrieve control, video, and display data, as required. Figure 5–4: Processor Block Diagram The processor communicates with all other instrument circuits via the address, data, and select signals, and receives requests for service from those circuits via the interrupt and status signals. Select signals are generated in address decoding circuits under control of the processor and used to read or write data from a circuit, or to trigger a circuit function. Interrupts from those circuits are combined in the interrupt logic to generate an interrupt request to the microprocessor. The processor responds by reading a data word from this logic to determine the source of the interrupt, or status data, and then performs the required service routine. #### Microprocessor The microprocessor, U1023, is a single chip processor using Z80 architecture constructed in high-speed CMOS logic. Each data word, or byte, is eight bits wide and the microprocessor has a 16-bit address capability, allowing it to address up to 65,536 memory locations. The processor's 5 MHz clock is derived from a crystal oscillator in the timebase circuits. When +5 VDC power is applied to C1030 and R1032, the rising voltage momentarily applies a positive signal to the input of gate U1031B. The resulting negative pulse at the gate output is supplied to U1023's reset input, causing the microprocessor to start at the beginning of its programmed routine each time power is applied. # Address Decoding and Memory The 16-bit address space of Z80 processor U1023 is divided into five primary areas. They are: - Program Memory (EPROM) space - RAM space - Non-volatile RAM space - Display RAM space - Enable and Select Signal space # Program Memory (EPROM) The program memory is stored in 64 kilobyte (kb) EPROM U2020, which is divided into two 32–kb bank-switched halves. Both halves occupy locations OOOOH to 7FFFH in the processor's address space. The most significant address bit on the EPROM, which determines which bank is addressed, is set by flip-flop U2030A. This bank-switching flip-flop can be toggled by the processor with two select lines, decoded in the enable and select signal address space. The select signal for the EPROM is generated by combined address line A15 with the MREQ signal in U1045A. Whenever the processor addresses a location where A15 is not set, the program memory will be selected to place data on the bus. #### RAM The first RAM is eight-kilobyte memory U1021, selected by a signal generated by a 1-of-8 decoder, U1022. This decoder operates on the three most significant address bits (A_{15} , A_{14} , A_{13}) in combination with MREQ. Each of its decodes represents a selection of a particular $^{1}/_{8}$ th of addressable locations. The first four decode signals are not used because they are located in the program memory space. The fifth decode is the select signal for the first RAM, occupying locations 8000H to 9FFFH. #### Non-Volatile RAM Space The second RAM is also an 8-kb memory, U1020, made non-volatile by lithium battery BT1010 and non-volatile memory controller U1010. The select signal for this RAM is generated similarly to that for the first RAM with the sixth $^{1}/_{8}$ th decode of U1022. This decode occupies AOOOH to BFFFH. #### Display RAM Space The display RAM is also an 8-kb memory, U1040, located in the display module. It is selected by the seventh decode of U1022. It occupies
locations COOOH to DFFFH. # Enable and Select Signal Space The remaining addressable space is used to generate enable, select, or trigger signals, which read, write, and control other circuits of the instrument. The eighth $^{1}/_{8}$ th decode signal of U1022 is used to enable four other 1-of-8 decoders: U2021, U2022, U2024, and U2026. These four decoders are further selected by the four combinations of A_{12} and A_{11} and operate on A_{10} , A_{9} , and A_{8} to generate the enable, select, and trigger signals CS00 through CS31. These occupy the remaining address space, locations EOOOH to FFFFH. An automatic wait state is inserted for all circuits selected by U2022. The wait state is used by the processor to compensate for the slow access times of U2041, U2046, and U4020 on the Main Board; U2023 on the Front Panel Board; and U2040 on the display module. The wait request is generated by U1041. The select signals from U2024 are also modified through U1043B by a 200-ns pulse. This pulse is created from gates U1042B, U1031C, U2040C, and J-K flip-flop U2033A. This circuit creates a write pulse that ends prior to the completion of the processor bus cycle, thus meeting data hold time requirements for some selected ICs. #### **Additional Decoding** The most significant address bit on the EPROM is set or reset by bank-switching flip-flop U2023A. Another control signal, heat disable, is generated by a similar flip-flop, U2023B. This is also toggled by two select lines. #### Interrupt Logic The interrupt logic consists of an eight-bit tri-state buffer, U1032, and gates U1030 and U1031D. Six interrupt requests signals are logically OR'd by U1030, then inverted by U1031D and applied to the microprocessor interrupt request input. Five of the interrupts are received from the video ADC, the digital timebase, a real-time counter, the front panel control ADC, and from the Option Port connector. The sixth interrupt input is unused. The six interrupt requests and two power status signals are connected to pull-up resistors R1033 and the inputs of buffer U1032. When the microprocessor responds to an interrupt request, it selects U1032, allowing the eight inputs to that device to be placed on the data bus for reading. The processor system outputs six control signals to the Driver/Sampler module. These signals are loaded from the data bus into latch U3010 by a select signal from the address decoder. These signals are used by the 1503C Driver/Sampler and the Option 06 adapter (if equipped). ## **Option Port Interface** #### Introduction The option port interface consists of the following: - Supply Controller - Buffers - Output Latch The option port interface provides the connection between the processor system and external options. This port has a unique protocol that must be followed for proper and safe operation. Further information can be obtained by contacting your Tektronix customer service representative. A block diagram of the option port interface is shown in Figure 5–5. The processor system provides all the data and control for the interface. Data, Address, and Control lines are all buffered for increased drive. The power to the option port is switchable to reduce power consumption, if necessary. The other outputs are available for control and protocol purposes. Figure 5–5: Option Port Interface Block Diagram #### **Supply Control** The +16 VDC and +5 VDC power outputs to the option port are switched supplies controlled by the microprocessor system. $\overline{CS14}$ and $\overline{CS15}$ are used to set and clear flip-flop U1011B. This feeds comparators U1012A and U1012B. The positive (+) input to the comparators is set at 2.5 volts, so the CMOS flip-flop will drive the negative (–) terminals above and below that voltage level. The comparators are powered with a +16 VDC and a -12 VDC source to give a good output swing in controlling the FET switches. The output of U1012A controls the +16 VDC switch and is pulled up via a 20 k Ω resistor, R2011. The output is also passed through two 100 k Ω resistors, R2012 and R2013, to prevent the FETs from being over-driven. Two parallel FETs, Q2011 and Q2012, control the supply. To reduce the instantaneous draw from the instrument supply when first turning the switch on, capacitive feedback is used (C2016). This feedback slows the turn-on time, allowing a capacitive load to be charged without affecting the instrument supply. A stabilizing $100~\Omega$ resistor, R2010, is also located in the feedback loop. **NOTE**. There are specified limits to this type of circuitry. Load specifications must be followed. The arrangement of the +5 VDC switch is similar except that a $10~k\Omega$ to $100~k\Omega$ resistive divider is used to ensure the switch has a definite turn-on. A single FET, Q1010, controls the +5 VDC output. #### **Buffers** Data lines to the option port pass through the bus transceiver, U2011. Address lines \overline{RD} and \overline{WR} are driven by U2012. CS22, from the processor system, enables these drivers with \overline{RD} controlling the transceiver direction. U2012 outputs are pulled up by the switched +5 VDC supply, via R2015. The data lines are pulled down via R2014. WR' is a modified write pulse 200 ns long, created to give a rising edge prior to the disabling of the drivers. This pulse is created by flip-flop U2033A. ### **Output Latch** The output latch U1011A is controlled by A_0 and A_1 , with select signal $\overline{CS10}$. The output of this latch is optionally used in the interface protocol. Two more lines are used in the option port interface. $\overline{IR4}$ is an interrupt signal that is active low when creating processor interrupts. R-T \overline{TRIG} is also available at the interface. This is the trigger pulse generated in the analog timebase. ### Option Port Wiring Configuration | Label | J2010
(on Main Board) | Option Port
(D-Connector) | |------------------|--------------------------|------------------------------| | D_0 | 3 | 2 | | $\overline{D_1}$ | 1 | 1 | | $\overline{D_2}$ | 24 | 25 | | $\overline{D_3}$ | 22 | 24 | | $\overline{D_4}$ | 20 | 23 | | D ₅ | 18 | 22 | | D_6 | 16 | 21 | | | 14 | 20 | | | 12 | 19 | | A ₁ ' | 10 | 18 | | | 8 | 17 | | A ₃ ' | 6 | 16 | | RD' | 7 | 4 | | WR' | 5 | 3 | | CS22 | 9 | 5 | | Label | J2010
(on Main Board) | Option Port
(D-Connector) | |--------------------|--------------------------|------------------------------| | ĪĀ | 11 | 6 | | ĪR4 | 13 | 7 | | R-T TRIG | 2 | 14 | | SW+16 | 25
23 | 13
12 | | +16 _{RTN} | 21
19 | 11
10 | | SW+5 | 17 | 9 | | +5 _{RTN} | 4
15 | 15
8 | ## **Video Processor** #### Introduction The video processor system consists of the following: - Vertical Position DAC - Summing Amplifier - Video Amplifier - Video DAC The video processor receives sampled video from the pulser/sampler and outputs a digitized video signal to the processor system data bus. A block diagram of the video processor is shown in Figure 5–6. Figure 5–6: Video Processor Block Diagram Vertical position information is loaded by the processor system into a DAC to generate a DC signal. Sampled video is combined with this vertical position DC voltage in a summing amplifier in order to allow vertical positioning of the displayed waveform. The combined video and position signal is amplified by the user-selected gain in the video amplifier. Gain of the amplifier is set by the processor system via the data bus and video amplifier select signal. The amplified video is digitized by the video ADC upon receipt of a control signal from the processor system. The processor is notified by the ADC interrupt request when the conversion has been completed. The processor then reads the value via the data bus. #### **Vertical Position DAC** The vertical position DC voltage is generated by a digital-to-analog converter consisting of U2046 and U3041. DAC integrated circuit U2046 receives a +2.5 VDC reference voltage from U3040 and multiplies it by a 14-bit digital value loaded from the data bus under control of the processor. The resulting current output of U2046 is amplified by operational amplifier U3041 to a proportional voltage of zero to -2.5 VDC. #### **Summing Amplifier** The summing amplifier consists of operational amplifier U8041; input resistors R8044, R8046, and R8047; and a feedback resistor, R8045. Summation of the DAC output through R8047 with the +2.5 VDC reference through R8046 causes the vertical position signal range to be enlarged and shifted to achieve an effective output of -2.5 VDC to +2.5 VDC. Sampled video, through R8044, is summed with the vertical position signal at the input node of U8041. Resistor T8045 determines the gain of U8041 and is paralleled with C8040 to reduce high frequency gain for noise reduction. The sampled video input may be observed at TP9041. #### **Video Amplifier** Combined video from the summing amplifier is further amplified by a three-stage programmable video amplifier. The first stage of this amplifier consists of amplifier U7040, voltage divider T8040 through R8043, and analog multiplexer U8040. Voltage gains of 0, 16, 32, or 48 dB are achieved by switching U8040 to connect one of the four points from the resistive voltage divider to the inverting input of U7040. This causes the amplifier gain to be equal to the attenuation factor of the voltage divider point selected. The second stage consists of amplifier U5040, voltage divider R6040 through R6047, and analog multiplexer U6040. This stage operates similar to the first stage except eight voltage gains are provided from 0 to 14 dB in 2-dB steps. The third stage consists of amplifier U3042, voltage divider T4040 through R4047, and analog multiplexer U4040. This stage operates similar to the first and second stages except eight voltage gains are provided from 0 to 1.75 dB in 0.25-dB steps. The gain of each of the three amplifier stages is controlled by the processor
system by loading latch U2044 with the appropriate 8-bit word from the data bus. Digital word 00 (all 0s) selects 0 dB gain and word FF (all 1s) selects 63.75 dB gain. All intervening values of 0.25 dB multiples are similarly chosen. The output of the video amplifier is filtered by R2040 and C2043 for noise reduction, then sent to the analog-to-digital converter. The output may be observed at TP4040 (see Figure 5–7). Figure 5-7: Video Processor Output # Video Analog-to-Digital Converter The output of the video amplifier is converted to its digital equivalent value by ADC device U2041. The conversion is done using successive approximation technique to compare the video voltage to the +2.5 VDC reference from U3040. The device is clocked by a 1.25 MHz clock derived from the timebase oscillator, and completes its 12-bit plus sign conversion in approximately 100 μ s. Gate U2040 provides an OR function for the ADC start conversion trigger and read pulses from the processor system. Either pulse selects the ADC for control and concurrent pulses select the trigger (\overline{WR} input) or read (\overline{RD} input) functions. Upon completing a conversion, the processor system is notified by an interrupt request $(\overline{IR0})$ from U2041. ## **Timebase** #### Introduction The timebase circuits receive video sample time delay values in digital form from the processor system and generate precisely timed strobes to the pulser/sampler circuits. Digital counters determine the delay in 50 ns multiples, and analog circuits further define the delay to fractions of that period. A block diagram of the timebase circuits is shown in Figure 5–8 (next page). 5-15 20 MHz Clock SYSTEM Generator **CLOCKS** 5 MHz 2.5 MHz 1.25 MHz 625 KHz 2.5 MHz 20 MHz Time DATA-PRT Pulse DRIVER Stobe Delay **PULSE** Counter Former **TRIGGER** Driver Circuit **GENERATOR** CONTROL-> 2.5 MHz 20 MHz Course Fine **RAMP** Ramp DATA-Generator Delay Delay **TRIGGER** CONTROL-Counter Counter Timebase Correction Delay TIMERASE INTERRUPT Cal **PROCESSOR** CONTROL Voltage Strobe Ramp ► SAMPLER Comparator Driver Cal 50 ns analog delay cal Analog Vref Timebase DAC **DIGITAL** ANALOG DATA **TIMEBASE TIMEBASE** CONTROL The digital portion of the timebase contains a clock generator that develops all frequencies used in the instrument electronics. Figure 5–8: Timebase Block Diagram A programmable digital counter, clocked at 2.5 MHz, is used to determine the PRT (pulse repetition time) of the pulser/sampler test pulse. The 1503C is programmed with a PRT of 350 μs . The output of the PRT counter is used to trigger a delay counter, also clocked at 2.5 MHz, to provide coarse (400-ns resolution) digital time delay. The end of this time delay triggers a fine delay counter, which is clocked at 20 MHz, providing 50-ns resolution to the sampler time delay. Both the coarse time delay and the fine delay counters are programmed by the processor via the data bus. The end of the coarse delay is used to generate a timebase interrupt request to the processor to inform it that a sample is being taken and a timebase update is required for the next sample. The output of the fine delay counter is provided to the analog timebase circuits for further delay control to become the sampler trigger. The beginning of the coarse delay counter period is detected by a pulse former, which generates a driver trigger for the analog timebase. The analog timebase circuits receive the driver and sampler triggers and provide strobes to the pulser/sampler. The driver trigger is delayed by an analog time delay and amplified by a driver circuit to provide the driver strobe. The ramp trigger is used to start a linear voltage ramp generator. A voltage comparator detects the time when this ramp reaches the programmed voltage of the timebase DAC (digital-to-analog converter) and signals a driver to produce a strobe for the video sampler. The timebase DAC is programmed by the processor to provide a voltage proportional to the portion of the 50-ns time delay period desired. Timebase control by the processor system is shown in Figure 5–9. Each period of the pulse rate, the processor calculates a new 33-bit digital time delay value for the next sample to be taken. The sixteen most significant bits of this value are loaded into the coarse delay counter, causing it to count that number of 2.5 MHz clock periods before starting the fine delay counter. Figure 5–9: Timebase Control The next three bits from the processor time delay value are loaded into the fine delay counter. This counter starts at the end of the coarse delay, and counts the selected number of 20 MHz clock periods (0 through 7) before triggering the analog delay. The analog delay circuit receives the 14 least significant bits of the time delay word. A digital-to-analog conversion provides a proportional voltage, which is compared to a linear voltage ramp to produce the programmed time delay (0 to 50 ns). The timing diagram in Figure 5–10 (next page) shows the combined effects of the three time delays. The output of the PRT counter, waveform (a), begins the coarse delay (b). The falling edge of this signal triggers the driver strobe (c), which causes a pulse to be applied to the cable test output. Figure 5–10: Combined Effects of Time Delay At the end of the coarse delay, the rising edge of this signal enables the fine delay (d), which produces a single ramp trigger pulse after the programmed delay. This pulse is shown expanded in waveform (e). The ramp generator waveform (f), also shown expanded, has a linear voltage ramp beginning on the falling edge of the trigger. This voltage is compared to the voltage from the timebase DAC, such that when the ramp exceeds the DAC voltage, the sampler strobe (g) falls. This falling edge is used as the sampler strobe for video sampling. At the beginning of each sweep, the zero distance reference is calibrated to the front-panel connector and the length of the analog ramp to 50 ns. Zero distance reference is calibrated by setting the digital and analog timebase for zero delay. Then the processor adjusts the driver delay so as to sample at the 10% point of the pulse. The ramp is calibrated by removing 50 ns of delay (one 50-ns clock cycle) from the sample trigger and then reinserting it with the analog delay. The processor adjusts the reference for the timebase DAC so as to sample at the previous level. This matches the analog delay to the 50-ns period of the clock. Figure 5–11: Calibration of Delay Zero and 50-ns Analog Delay #### **Digital Timebase** All digital clocks from the instrument are derived from a 20 MHz crystal oscillator, U2031. Flip-flops U2042A and U2042B divide the clock frequency to 10 MHz and 5 MHz respectively. The 5 MHz output is provided to the microprocessor and to TP2041. Gate U2034B decodes one of the four states if U2042 and provides a 5 MHz pulse to U2033B. Flip-flop U2033B is clocked by the 20 MHz clock and divides the 5 MHz signals to 2.5 MHz synchronously with the 20 MHz. The 2.5 MHz clock is further divided to 1.25 MHz by U2025A and 625 kHz by U2025B. The PRT, coarse delay, and real-time counters are contained in a triple, 16-bit, programmable counter device, U2030. The PRT and coarse delay counters are clocked at the 2.5 MHz rate. The output of the PRT counter, pin 10 of U2030, is applied to the trigger input of the coarse delay counter as a start-count signal. The negative-going pulse from the coarse delay counter, pin 13 of U2030, is input to a two-stage shift register, U2032C and U2032D. This shift register is also clocked at 2.5 MHz and serves to delay the signal and reduce its skew relative to the 20 MHz clock. The $\overline{\mathbb{Q}}$ (inverted output) of U2032C is a positive-going pulse that is supplied to a three-stage shift register, U2036B, U2036D, and U2036A, which is clocked at 20 MHz from inverter U2034A. The leading edge of the pulse is decoded by NAND gate U2045B, which also ANDs the signal with the 20 MHz clock from inverter U2045A. The resulting driver trigger pulse is a negative-going pulse of nominally 25 ns width. The falling edge of this pulse is determined by the edge of the 20 MHz input to gate U2045B and is used as the driver trigger. The coarse delay pulse from shift register U2032D and U2032C us decoded by NOR gate U2034C to detect the pulse rising edge (end of the negative pulse). The resulting positive pulse is 400 ns wide (one cycle of the 2.5 MHz clock). This pulse is shifted through flip-flop U2036C to synchronize it with the 20 MHz clock and applied to the count enable input of U2037, a four-bit programmable counter. Counter U2037 will have been preset to a count of 8 through 15 by the processor through latch U2043 with $\overline{CS11}$. While the count enable pulse is present, it will count exactly eight times at the 20 MHz rate, thus passing through count 15 after 0 through 7 clock pulses. The terminal count (TC) output of U2037 is a decode of count 15. Thus this signal creates the fine delay pulse after the programmed delay. This positive-going pulse is gated with the 20 MHz clock by NAND gate U2045C to provide a 25 ns negative-going pulse for the ramp trigger. Ramp timing is derived from the trigger falling edge. The end of the coarse delay, detected by gate U2034C, is used to clock U2027A, which generates an interrupt request to inform the processor that a sample is being taken. An acknowledge pulse, $\overline{CS16}$, from the address decoder resets this flip-flop. #### **Analog Timebase** The logic driver trigger from the digital timebase is first amplified by transistor stage Q9021. The trigger is capacitively coupled through C8022 and R9027 to shift it to analog levels. The collector of Q9021 is clamped to –0.5 VDC between pulses by CR8020 and rises to +6 VDC peak during the 25 ns pulse. This signal is applied to C8021 through R8025 to generate an exponentially rising pulse of about 4 VDC peak during the pulse width. Dual
transistor Q8020 is a differential amplifier that is used as a voltage comparator to detect when the pulse on C8021 has reached the DC voltage level set through U4021B and R8023 by the zero-distance calibration circuit. This DC voltage level, from zero to 4 VDC, allows setting the time when the voltage comparator switches (a range of about 20 ns). Dual transistor Q9020 is connected as a current source, providing a constant 2-mA bias to the emitters of Q8020. Between pulses, this current flows through Q8020B. When the exponential pulse reaches the adjustable voltage level, the current is rapidly transferred to Q8020A, causing a negative-going pulse at R8020. This pulse is coupled to the output stage, Q9010, through C9020 and R9020. Transistor Q9010 is biased to 0.5 mA between pulses to obtain fast turn-on, and provides a positive-going 5 VDC pulse to U8010B and U8010C. Flip-flop U7010A is set or reset by the processor to steer the pulse either to the option port or the driver. The negative-going pulse from gate U8010B or U8010C is logically OR'd by U8010A, then applied to C9010 and R9010. This pulse is fed back to the input of the gates U8010B and U8010C through CR9010 to obtain a one-shot action, which stretches the driver strobe pulse width to 5 µs. The driver strobe is made available at TP9011. The ramp trigger pulse from the digital timebase is AC-coupled by C3040 and R3041 to Q4040. Diode CR3031 allows the negative-going pulse to pass directly, while R3040 limits the input current sue to the re-charging of C3040 between pulses. The output of Q4040 is held at ground by L5030 between pulses and rises to 6 VDC during the pulse. Choke L5030 is center tapped to provide an equal negative-going pulse at its undriven end. This pulse is fed through C5033 and R4032 to the emitter of Q4031 to obtain positive feedback to Q4040. This forms a one-shot circuit with the pulse width determined by C5033 and R4032. The 25 ns ramp trigger pulse is thus stretched to about 80 ns at L5030. Dual transistor Q5032 operates as a current source, providing a constant 5-mA current, which is used to charge C5032 to create a linear voltage ramp. Between ramp trigger pulses, this current is conducted through CR4032 and L5030 to ground, creating a voltage of 0.5 VDC on C5032. The positive one-shot pulse from Q4040 turns off CR4032 and directs the charging current to C5032. The negative-going pulse from L5030 is connected to C5032 through CR5030 to provide a cancelling effect for the positive pulse being coupled through the capacitance of CR4032. The linear rising voltage pulse from C5032 is buffered by source-follower Q5031 and emitter-follower Q5030 to provide a low output impedance and prevent loading the ramp. Transistor Q7030 provides a constant 2-mA bias current to junction FET Q5031. The ramp voltage is AC-coupled to voltage comparator Q7021 by C7030 to remove the DC offset voltage developed in the preceding circuits. A small negative DC voltage of approximately –200 mV is added by voltage divider R7032 and R7025 to hold the voltage comparator off between pulses. Voltage comparator Q7021 is biased at 2 mA by dual transistor Q5020. During the linearly rising ramp voltage, it compares the ramp to a programmed DC sample reference voltage produced by the timebase DAC circuit. When the ramp reaches the sample reference value, Q7021A rapidly turns on to produce a negative-going signal across R7024. This pulse is coupled through C7022 and R7021 to turn on Q6020, providing a positive pulse to the base of Q7020. The negative-going sampler strobe coming from Q7020 is supplied to the sampler and to TP7010. Timebase DAC U4020 and amplifier U5010 inverts and multiplies V_{REF} by the 14-bit digital word loaded by the processor. It is filtered for noise by R7026 and C5023 and connected to comparator Q7021 through R7027 to set the analog delay (0 to 50 ns). To calibrate the analog delay to 50 ns, the processor sets $\overline{\text{IR2}}$ (IR2 high) and loads a new 12-bit word in latches U3021 and U3022 (max 1-bit change per sweep) with chip selects $\overline{\text{CS11}}$ and $\overline{\text{CS12}}$. DAC U3023 multiplies the reference current (1 mA set by R3020) by the digital word from the latches. The DAC output current and the current from the last two LSBs (which comes from the latches through R3031, R3033, R3039, and R4020) are summed by U4021A and forced through R4021. This develops a correction voltage at TP4020 of ± 5 VDC and a sensitivity of 2.5 mV per bit (the currents from the LSBs have been complimented by the processor to correct their phase). The DAC circuit is designed to nominally run at half of full dynamic range (2048/4096) of 2 mA, that generate 1 mA of current at the summing node. That current is balanced out by 1 mA of current from R4020, giving a nominal output of zero volts at TP4020 and TP4021. U5020, R5020, R5021, and C5021 scale the correction signal (up to ± 5 VDC) at TP4020 to ± 0.4 VDC at V_{REF} of U4020. Resistors R5023 and R5022 furnish a current to offset V_{REF} to a -4 VDC ± 0.4 VDC (equivalent to ± 5 ns) correction signal to the 50 ns analog delay. To calibrate, the zero-distance delay ($\overline{\text{IR2}}$) is set low, and through R3037 and CR3030, turns on Q3030, whose collector (through R3036 and R3035) raises the cathode of CR4030 to +6 VDC. This allows R4023 to turn on Q4030. Capacitor C4022, through R4030 and Q4030, is charged to the new corrected level at TP4020 that was asked for by the processor. The correction voltage on C4022 from buffer amplifier U4021B is scaled by voltage divider R8023, R8022, and R8021 from a range of \pm 5 VDC to a range of zero to 3.5 VDC. This voltage is applied to the base of comparator Q8020B, which provides \pm 10 ns of zero-distance delay adjustment. Components C3048, R3042, R2032, C3047, R2034, and C8024 are used to reduce jitter and cross-coupling between circuits. # **Pulse Generator/Sampler** #### Introduction The front-end consists of two major circuits: - Pulse Generator - Sampler The pulse generator is triggered by a line from the Main Board and sends out a pulse via the front-panel connector. The sampler, which is also triggered from the Main Board, takes its input from the signal returning from the test cable via the front-panel connector, then generates a steady-state sample of a small time segment of the input as its video out. A block diagram of the pulse generator/sampler is shown in Figure 5–12. Figure 5–12: Pulse Generator/Sampler Block Diagram #### **Pulse Generator** The pulse generator has four available pulse widths: 2 ns, 10 ns, 100 ns, and 1000 ns. Four output impedances are also available: 50Ω , 75Ω , 93Ω , and 125Ω . The pulses are generated by applying a voltage to an LC tank. The tank will then ring or flyback at its resonant frequency. By varying the values of the inductor and capacitor, different pulse widths and heights can be obtained. The 1503C pulse generator has four such tanks, each one having a specific pulse width. One tank circuit at a time is selected by the analog switches in U1050 by turning on one of the four driver transistors (Q2050, Q2051, Q2052, and Q2053), and one of the four buffer transistors (Q2030, Q2031, Q2032, and Q2033). The four output buffers sum together at TP2030. The signal is then amplified by emitter-follower Q2034 and common-base stage Q3021. The final stage is Class C output driver Q3020. The output driver is biased Class C for two reasons: it has lower power consumption and it clips the bottom 1V of signal providing a cleaner output. The output driver is also where the output impedance switching is accomplished. BY changing the collector load resistance with FET switches, the reverse termination changes. The networks on the emitter also change to keep the gain and bandwidth of the stage constant. This circuitry has two limitations: first, a variation in the "on" resistance of the FETs causes slight errors in the termination at low frequencies, and second, the "off" capacitance of the switches makes them effectively partially "on" at high frequencies, causing additional termination errors. #### Sampler Sequential sampling provides a means to display fast-changing signals that are outside the bandwidth capabilities of the vertical display system of the 1503C. One single point of a pulse is measured and stored. During the next pulse, the instantaneous amplitude of the next point on the waveform is measured and stored. This process is repeated for 250 pulses to collect a representative waveform. Between waveforms, the 1503C samples the leading edge of the 2-ns pulse to get data needed for the timebase correction circuit. In the 1503C, the input signal is first measured by a fast sampler with about 500 MHz of bandwidth. The output of the first sampler is re-sampled by the second sampler to provide a steady signal for the A-to-D converter on the Main Board. #### First Sample Bridge Diodes CR3090, CR3091, CR3092, and CR3093 form a bridge-style sample gate. Normally, these diodes are back-biased to prevent CR3091 and CR3093 from being turned on by the large input signal expected. Two strobes of opposite polarity have sufficient amplitude to overcome the back-bias. The two strobes turn on all the diodes in the bridge, allowing current to flow from the input to storage capacitor C2090. Operational amplifiers U1090A and U1090B furnish the ± 2 VDC of back-bias relative to the feedback from the second sampler to keep the bridge bias centered at the input level. #### **Preamp** Amplifier U2080 is a positive feedback amplifier with C2080 providing the feedback capacitance. The gain of this amplifier is set by R1080 and R2074 to raise the voltage across C2090 to increase sampling efficiency of the first sampler. Compensation for diode bridge capacitance is via R2097, which feeds a small amount of signal into the negative input of the preamp. Op-Amp U2070A is
a buffer amplifier to drive the second sampler. #### **Second Sampler** The sample of the signal from the preamp is gated through Q2060 to C1064, where it is stored until the next sample is taken. The signal in C1064 is buffered by U2070B and is then used in three places. First, it sets the center of the first sampler bridge bias through R2082. Second, it holds the first sampler capacitor C2090 at the current input voltage through R2080 and R2081. Third, the signal is sent to TP3051 and the Main Board as the video output. # First Sample Gate Strobe Generator The sample trigger goes to Q3050 and C3065, which form a 7-ns delay needed for compatibility with the Main Board timebase correction circuit. This circuit triggers Q3070, which amplifies the sample trigger to a +12 VDC pulse to trigger the second sample gate strobe trigger through R3071 and to drive Q3080 through common-mode transformer T3070. When Q3080 is turned on, +10 VDC and –10 VDC pulses are generated. This is coupled through C3080, C3081, and common-mode transformer T3080 to the 16 Ω clipping lines, which reduce the pulse width to approximately 500 ps. The pulses are then coupled to the first sample bridge through common-mode transformer T3081, C2081, and C3082. #### Second Sample Gate Strobe Generator Transistors Q3061 and Q3062 form a one-shot pulse generator that produces a 5-µs pulse to drive the second sample gate through Q3060. Diode CR2062 clamps the trailing edge of the strobe at –7 VDC while CR2060 and CR2061 provide transient protection for Q3060. #### **Front Panel** #### Introduction The Front Panel Board consists of the following circuits for these controls: - Push Button Switches and Latches - Rotary Binary Switches - Resistive Shaft Encoders - Analog-to-Digital Converter for Shaft Encoders The Front Panel Board consists of the following circuits for the display module: - Electroluminescent Backlight Switch and Power Supply - Display Heater Circuitry - Display Drive Voltage (Contrast) Temperature Compensation The Front Panel Board contains most of the instrument control as well as some circuitry for the display module. A block diagram of the Front Panel Board is shown in Figure 5–13 (next page). 1503C MTDR Service Manual 5–25 Figure 5-13: Front Panel Block Diagram # Push Button Switches and Latches The push button switches are normally open momentary switches When depressed, these switches tie the inputs of NOR gate latches U3021, U3022, and U3023 to +5 VDC, setting the latches. The latches are reset by control signal ADCRD. The processor updates the instrument configuration by periodically reading the state of the latches through multiplexers U2024, U3025, and U3031. These switches control: - MENU - VIEW INPUT - VIEW STORE - VIEW DIFF - STORE #### **Rotary Binary Switches** The rotary binary switches provide a 4-bit binary value, indicating their position. The outputs are tied to the inputs of the multiplexers. The position of the rotary switches control the following functions: - FILTERING, SET REF, SET DELTA - HORIZONTAL GAIN (DIST/DIV) - V_P COARSE - V_P FINE - PULSE WIDTH - IMPEDANCE #### Switch Multiplexers The switch multiplexers are U2024, U2025, U3025, and U3031. These dual four-channel multiplexers multiplex the switch settings of the push button and rotary switches onto the data bus. The control signal \overline{MUXCS} , in conjunction with A₂, selects the multiplexers while A₀ and A₁ determine which switch bank is placed on the data bus. #### **Resistive Shaft Encoders** The resistive shaft encoders R1022, R2024, and R3020 are dual-concentric, 360° rotation potentiometers, with the wipers set 180° out of phase with respect to each other. The wipers are tied to the analog-to-digital converter inputs of ADC U2023. The three resistive shaft encoders control the following functions: - VERTICAL GAIN - VERTICAL POSITION - HORIZONTAL POSITION (Cursor) # Analog-to-Digital Converter The ADC, U2023, is an eight-channel analog-to-digital converter. It converts the voltages on the wipers of the resistive shaft encoders to a digital value, depending on the position of the encoders. It also converts the voltage on the display thermistor (T_{SENSE}) and the chart recorder thermistor divider circuits into digital values representing the corresponding temperatures. The temperature data is used by the processor to compensate the LCD drive voltage and chart recorder print parameters for variations in temperature. The control signal TRIG ADC is used to start a conversion; ADC RD reads the value; and A_0 , A_1 , and A_2 select one of the eight channels for conversion. Control signal \overline{EOC} notifies the processor of a conversion completion, via the $\overline{IR3}$ line. # Electroluminescent Backlight Switch and Power Supply The EL (electroluminescent) backlight is switched by software. Control signal $\overline{\text{LIGHTCS}}$, with $\overline{\text{RD}}$ or $\overline{\text{WR}}$, sets or resets (respectively) NOR latch U3020. The output of the latch is applied to the + side of comparator U2020B; the – side is held at 2.5 VDC. When the output of the latch is high, the comparator output is +16 VDC, which turns off the gate of P-channel FET Q1030, turning off power to the EL power supply, PS2030. When the output is low, the comparator output is 0V, which turns on the FET, turning on the power to the EL power supply. R1031, C3030, and C3031 serve to filter noise introduced to the +16 VDC supply by the EL power supply. #### **Display Heater Circuitry** The display heater circuitry regulates the application of power to the display heater (see *Indium Tin Oxide Heater* later in this chapter for more information). When the display thermistor divider senses the display temperature has dropped below +10° C, the heater can be turned on if the control signal HEAT ENABLE is not asserted. For reasons of power economy, the chart recorder and display heater are not allowed to operate concurrently. The processor does this by asserting HEAT ENABLE while making a chart recording. When HEAT ENABLE is low, N-channel FET Q2020 is off, making the voltage on the + side of the comparator, U2020A, approximately +5 VDC. This will allow the + side (chart recorder) to always be greater than the – side (display thermistor divider voltage). The output of the comparator will be +16 VDC, which turns off P-channel FET Q1020. This turns off the power to the display heater.. When $\overline{\text{HEAT DISABLE}}$ is high, Q2020 will turn on and the voltage on the + side of the comparator will be approximately 2.5 volts. When the display thermistor divider voltage (– side) is above 2.5 volts (about +10° C), the comparator output will be 0 V, which will turn on Q1020. This will turn on the heater. As the temperature rises above +10° C, the thermistor divider voltage will be less than 2.5 V and Q1020 will turn off, shutting off power to the heater. # Display Temperature Compensation The LCD drive voltage compensation circuitry adjusts the drive voltage (contrast) to assure a constant display contrast within the operating temperature range of the instrument. The display thermistor is attached to the LCD and forms the sensor in the display thermistor divider circuit. Its output is a voltage related to the display temperature. This voltage is read by the processor through the analog-to-digital converter, U2023. The processor uses this voltage value to determine a drive voltage. This is sent to digital-to-analog converter U2021 via the data bus. The output of the DAC is amplified to op-amp U2010A and applied as the LCD drive voltage. As the temperature of the display (thermistor divider voltage) changes, the processor modifies the drive voltage via the DAC. In this manner, the drive voltage is compensated due to variations in display temperature. Trimmer potentiometer R1011 is used to offset the drive voltage produced by U2010A to compensate for variations in display cells and thermistors. ### **Display Module** #### Introduction The display module consists of the following: - LCD Cell - Row Driver/Controller Board and Column Driver Board - Electroluminescent Backlight - Indium Tin Oxide (ITO) Heater - Mechanical frame, which supports the above subassemblies The display module function is to take bit pattern data generated by the instrument internal electronics and display it on the LCD. A block diagram of the display module is shown in Figure 5–14. Figure 5-14: Display Module Block Diagram The LCD cell is the "video screen" that displays information generated by the processor. The processor updates the display memory periodically with a new picture and the display memory holds this bit pattern data. This data is received by the display controller and sent to the drivers along with some control and timing signals that provide operating information to the drivers. The row and column drivers are attached electrically to the LCD cell through elastomeric connectors and a flex cable. These drivers place signal voltages on the electrode matrix in the LCD cell and thus generate the video display. There are other circuits contained in the display module. An indium tin oxide (ITO) heater warms the display during cold temperatures. A temperature sensor attached to the display provides display temperature data to the heater and drive voltage circuitry (see Front Panel text in this chapter). An electroluminescent backlight provides illumination in low light conditions. #### LCD Cell The LCD cell provided in the 1503C uses an advanced technology known as Superbirefringent Effect (SBE) to obtain greatly improved contrast and viewing angle over conventional LCD cells. The function of the LCD module is to receive bit pattern data from the CPU and display it. First, the processor generates a 4k X 8-bit pattern image in its own memory. It then writes this bit pattern, via the data bus, to the display memory, U1040, in the form of a block transfer. The bit pattern is mapped
in the display memory and later on the LCD cell. Second, the LCD controller, U2040, reads the bit pattern from the display RAM, formats it, and sends it to the column drivers. Last, the column drivers and the row drivers generate select and non-select voltages based on the timing, control, and data signals received from the controller. These voltages are applied to the LCD cell matrix, turning off and on pixels that match the bit pattern in the display memory. The pattern of pixels form the image on the display. The cell is physically composed of two planes of glass, two polarizers, a matrix of transparent electrodes, and a filling of liquid crystal material. A plating of indium tin oxide on the back plane of glass is used as a heater, but is not used in the display process. Electrically, the cell is a 128 X 256 pixel display, each pixel being an intersection of a row and a column. These intersections are like small capacitors. When a non-select voltage (about 1.5 VRMS) is applied to a row and a column, their intersection is turned off (see Figure 5–15, next page). That is, light is allowed to pass through the display and reflect back from the transflector, creating an "off" pixel. A select voltage (about 1.7 VRMS) turns the intersection on. That is, the light is not allowed to pass through the crystalline material and is, therefore, not reflected back from the transflector, creating an "on" pixel. Figure 5-15: SBE Cell #### **Row and Column Drivers** There is one row driver, located on the Row Driver/Controller Board. There are eight column drivers, located on the Column Driver Board. The row and column drivers receive control, timing, and data signals from the controller and translate them to properly timed voltages that are placed on the pixel matrix. The voltages are placed on the matrix by the flex cable for the rows and by the elastomers for the columns. Figure 5–16: Row Driver Block Diagram The function of the row driver is to sequentially address each of the rows of the display. The on or off state of the pixels on the addressed row is then determined by the voltages on the columns. The row driver addresses each line, one after another, completing the scanning at the refresh rate of 125 Hz. The column driver is similar to the row driver except bit pattern data is level-shifted rather than the start pulse. The column drivers provide select and non-select voltages to the column electrodes according to the bit pattern data. The presence of select or non-select voltages on the columns, in conjunction with the currently selected row pair determine which pixels are on or off on that row pair. The column drivers regulate the select and non-select voltages as the row drivers select rows. The result is a bit pattern displayed on the screen that represents a waveform. Figure 5-17: Column Driver Block Diagram #### **Row Driver** The row driver is an 80-pin flat pack located on the Row Driver/Controller Board. It is composed of a 64-bit shift register, U2020, a 64-bit latch, and a 64-bit level shifter. The row driver has the following relevant inputs: - ST <start pulse>: Input to the shift register <Din on SED 1190> - LP < latch pulse = LATCH>: Falling-edge triggered, this shifts data in the shift register and latches contents of the shift register into the latch < Y S_{CL} on SED 1190> - FR <frame signal>: Defines the select and non-select voltages. Figure 5–18: Row Timing Diagram The relevant outputs: Row 1 through 64 are paralleled outputs driving both sides of the display. One set of outputs drive rows 1 through 64 and the other set drive rows 65 through 128 on the LCD. #### **Supply Voltages** include the following: - +5 VDC supply voltage for logic and select drive voltage - V₂ non-select drive voltage - V₅ non-select drive voltage - V_{LCD} select voltage - GND return for +5 VDC. To perform its function, the row driver receives a start pulse at the beginning of a frame. LP shifts this start pulse into the shift register. The contents are then transferred to the latch. The level shifter shifts the logical 1s and 0s in the latch into select and non-select voltages according to FR (see table at top of next page). | FR | Bit X in Latch | Row X Output | |----|----------------|---------------------------| | 0 | 0 | V ₅ non-select | | 0 | 1 | +5 VDC select | | 1 | 0 | V ₂ non-select | | 1 | 1 | V _{LCD} select | ST, LP, and FR are sent by the controller in such a way that a scanning select voltage is applied sequentially to the rows, with the polarity of the select voltage alternating with FR, every frame. The alteration is required to place an AC voltage on the pixels. #### **Column Driver** A column driver is composed of several blocks: 16-position, 4-bit wide shift register; 64-bit latch; 64-bit level shifter; and an enable flip-flop. A column driver has the following relevant inputs: - D3–D0 <data MSB to data LSB>: Bit pattern data for data formatted and sent by the controller - XSCL <column (X) shift clock>: Shifts D3–D0 in parallel groups of four bits - LP < latch pulse>: Latches data in shift register into 64-bit latch - FR <frame signal>: Defines select and non-select voltages - E_{IN} <enable in>: Input to the enable flip-flop - E_{CLK} <enable clock>: Clocks E_{IN} into the enable flip-flop. The relevant outputs: ■ Columns 1 to 64: These are the 64 outputs from the level shifter. **NOTE**. The manufacturer's pinout of the outputs are numbered in order of shift (seg 63 – seg 0). The nomenclature herein refers to the outputs in column order. Therefore, seg 63 corresponds to Column 1 and seg 0 corresponds to Column 64. ■ EOUT: Output from the enable flip-flop. Figure 5-19: Column Timing Diagram **Supply Voltages** include the following: - +5 VDC supply voltage for logic and select drive voltage - V₃ non-select voltage - V₄ non-select voltage - V_{LCD} select voltage - GND return for +5 VDC To perform its function, the column driver shift registers are filled with data by receiving data, XSCL, E_{CLK} , and E_{IN} from the controller. LP then latches the contents of the shift registers into the latches. The level shifter translates the logical 1s and 0s in the latch into select and non-select voltages according to FR (see table). | FR | Bit X in Latch | Column X Output | |----|----------------|------------------| | 0 | 0 | V ₄ | | 0 | 1 | V _{LCD} | | 1 | 0 | V ₃ | | 1 | 1 | +5 VDC | The pixels selected by both the column drivers and the row driver are turned on; all others are off. The process of filling the column drivers is repeated every LP (i.e., for every addressed row until all lines in both screen halves have been refreshed). One frame is thus complete and the entire process is repeated. Figure 5–20: Shift Register #### **Display Memory** The display memory is an 8k X 8 RAM (only 4k X 8 is used), located on the Row Driver/Controller Board. The display memory stores the current bit pattern generated by the processor on the Main Board. The processor interrupts the controller periodically and places a new bit pattern in the display memory. The controller then reads the bit pattern out of the display memory, formats it, and sends it to the column drivers. #### Controller The controller, located on the Row Driver/Controller Board, generates control and timing signals for the row and column drivers, and formats bit pattern data stored in the display memory, which is then sent to the column drivers. The function of the controller is to read bit pattern data from the display memory and format it. This data is then sent (along with control and timing signals) to the column and row drivers, which drive the LCD to provide the pattern on the display. #### **Row Driver Interface** The row driver requires a start pulse at the beginning of each frame, 64 latch pulses following that to scan the start pulse down the rows, and a framing signal to generate the AC select voltage. These signals are generated by the controller as shown in the row driver timing diagram (Figure 5–18). The controller, running at a clock rate of 0.625 MHz, generates ST, LP, and FR with the following periods: | ST | 8 ms | |----|--------| | LP | 125 µs | | FR | 16 ms | **NOTE**. The manufacturer's nomenclature on the controller differs somewhat: ST = FRP, LP = LIP, and FR = FRMB. #### **Column Driver Interface** Thee column drivers require more control and timing signals than the row driver. These include: E_{IN} , E_{CLK} , XSCL, D3-D0, LP, and FR. E_{IN} is required at the start of every line to enable the first (leftmost, as seen from the front of the display) column driver pair. E_{CLK} is required once to latch in E_{IN} and three times after that to enable the successive column driver pairs. Each successive E_{CLK} must occur every 16 XSCL pulses (i.e., after each column driver pair is full of 64 bits (4 X 16 bits)). XSCL is required 16 times per column driver pair per line to shift in the bit pattern data. Therefore, a total of 64 XSCL are required per line for the four column driver pairs. XSCL is generated by U3030, a counter clocked by CLP or LP from the controller. It must be generated as such because the controller was designed to use with 80-channel column drivers instead of 64-channel column drivers. The controller version of E_{CLK} , CE0, is generated every 20 XSCL pulses rather than every 16 XSCL pulses as required by the 64-channel column drivers. The counter is used to translate XSCL into E_{CLK} . As a consequence of generating E_{CLK} as above, E_{IN} must also be generated. This is done with the U3065 flip-flop pair. The flip-flop pair is set when LP and LE0 are asserted and hold set until XSCL (CLP) shifts in a logic 0 after the pulse. E_{IN} is held high for a duration long enough to enable the first column driver pair. #### CPU and Display Memory Interface There are two data buses and two address buses on the controller. The first data bus, DB7 – DB0, is used to access registers internal to
the controller. These internal registers are used to initialize the controller. The second data bus, RD7 – RD0, is used to read bit pattern data from the display memory. The data bus from the display memory is tied directly to the RD7 – RD0 data bus, and indirectly through a bidirectional bus transceiver, U1050, to the DB7 – DB0 data bus. The DB7 – DB0 data bus is tied directly to the CPU data bus through the 40-pin connector. The first address bus, MA12 - MA0, is tied to the display memory and addresses it. MA12 - MA0 can have one of two sources. The first is an internal address in the controller, which is the address of the currently accessed bit pattern data byte. The second is the address resent on the second address bus, A11 - A0. This second address bus is tied to the CPU address bus through the 40-pin connector and is used to address the display memory during the time the CPU is updating the display memory. The control signal DIEN controls the multiplexing of the internal address and A11 - A0 to MA12 - MA0. A15 - A12 are tied low. There are several other relevant control signals to the controller: \overline{CS} <chip select>, \overline{WR} <write>, and \overline{RD} <read>. $\overline{\text{CS}}$ and $\overline{\text{WR}}$ are used in conjunction with A0 to write to the internal registers. $\overline{\text{CS}}$ and $\overline{\text{RD}}$ in conjunction with A0 to read them. XT is the system clock, from which all timing in the controller is derived. It is supplied via the 40-pin connector at 0.625 MHz. \overline{DRAM} <display memory select> is used with \overline{WR} by the CPU to select and write to the display memory. \overline{DRAM} and \overline{RD} are used to read. The combinational logic associated with the selection of the display memory is such that the memory is set to the selected read mode at all times except when the CPU accesses it. In that case, it could be either selected read or selected write at the discretion of the CPU. This combinational logic also controls the flow of data through the transceiver. Figure 5-21: CPU and Display Memory Interface In operation, the controller is usually accessing the display memory and refreshing the screen with the bit pattern data. At the rate of about 10 Hz, the CPU intervenes in the refresh operation to update the bit pattern display memory. This operation occurs as a block transfer of 4k X 8 from the CPU memory to the display memory. This block transfer takes place in about 17 ms. During thew block transfer, the controller cannot access display memory and, therefore, sends null data to the screen. #### Electroluminescent Backlight Because the LCD display is non-emitting, a light source is needed for low light applications. This source is provided by an electroluminescent (EL) backlight behind the transflector. The EL backlight is a long-life device, requiring a 130 VAC, 400 Hz supply. This supply is routed from the Front Panel Board through the 40-pin connector to pads on the Row Driver/Controller Board. The leads on the backlight are then attached to these pads. **CAUTION.** The pads for the EL backlight are exposed when the display module is removed from the front panel. They operate from a high voltage source. Do not turn on the backlight when the pads are exposed. #### Indium Tin Oxide Heater Because the LCD display response time slows down rapidly at temperatures below $+10^{\circ}$ C, a heater is required to maintain the temperature of the LCD cell at $+10^{\circ}$ C when the ambient temperature falls below $+10^{\circ}$ C. The heating element is a resistive plating of indium tin oxide (ITO) on the back side of the row pane. This plating has a resistance of about 64 Ω . The power for the heater is supplied through the 40-pin connector to pads on the Row Driver/Controller Board, similar to those for the EL backlight. A thermistor, RT1030, is attached to the lip of the row pane opposite the cable. This thermistor is used to track the temperature of the LCD cell and turn on the heater power (+16 VDC) when the temperature falls below $+5^{\circ}$ C. With a supply voltage of +16 VDC, the heater dissipates about 4W. The circuitry to control the temperature is located on the Front Panel Board. The thermistor leads are attached to pads on the Row Driver/Controller Board, similar to the heater, and routed through the 40-pin connector. ### **Option 06 (Ethernet®)** #### Introduction Option 06 consists of the following: - Load and Diplexer - Output Amplifier - Relay and Driver - Over-voltage Sensing - Control Switches Option 06 extends the frequency range of the standard instrument 50 Ω termination down to DC. This is accomplished via a diplexed load. Two additional DC voltages are allowed to the output by connecting the load to a voltage source. Additionally, the circuit disconnects the DC load if external voltages are applied above a certain limit. A block diagram of Option 06 is shown in Figure 5–22. Figure 5–22: Option 06 (Ethernet®) Block Diagram Ethernet® is a registered trademark of the Xerox Corporation. #### **Control Lines** The control lines from the Main Board set the normal operation of the instrument as follows: | Control Lin
A (Pin 10) | | Relay | DC Output Voltage into 50 Ω | |---------------------------|---|-------|------------------------------------| | 0 | 0 | Off | AC Coupled | | 5 | 0 | On | -1.05 VDC | | 0 | 5 | On | –1.7 VDC | | 5 | 5 | On | 0.0 volts | #### **Output Amplifier** The control of the output voltage is done by selecting which of the analog switches in U1031 is on. The switches connect either R1036 or R1037 to the +5 V_{REF}. This causes Op–Amp U1030B, buffer transistors Q1020 and Q1021, and feedback resistor R1034 to hold either -2.1 or -3.4 VDC at the transistor emitters. If both switches are off, R1035 holds the input of U1030B at ground so the output voltage is 0.0 volts. #### Relay and Driver The control lines are also OR'd together by CR2025 and CR2024 to enable the relay driver. If either or both are high, current flows through R2031 to hold pin 3 of U1030A at 0.6 VDC. Because pin 2 is at -0.6 VDC, the output of U1030A goes high. This turns on Q2020 and drives the relay K1020. If both control lines are low, less current flows through R1031 and pin 3 of U1030A will be at -1.3 VDC. Because this is below pin 2, the output on pin 1 will be low and the relay will be off. The -1.3 VDC and -0.6 VDC on pins 3 and 2 are set by the voltage dividers from the +5 V_{REF} and -10 V_{REF}, composed of R2025, R2026, R2027, and R2030. #### **Over-Voltage Sensing** The relay can also be turned off by the over-voltage sensing circuit. This works by current flowing from L2010 through R2020. Depending on polarity, this current flows through either CR2020 or CR2021 and charges either C2030 or C2031 as a peak hold circuit. Because C2030 and C2031 are on pins 2 and 3 if U1030A, the voltage change will turn off the relay if it gets bigger than the normal 1.2-volt difference. This happens at about 10-12 volts peak-to-peak on L2010. Zener diodes VR2020 and VR2021 clamp these voltages to prevent damage to U1030. #### **Load and Diplexer** L2010 is the diplexer low-pass element. It creates a corner at about 8 kHz with the 50 Ω load (R1011) to compliment the 0.44 μF capacitor and 50 Ω impedance on the standard 1503C Pulser/Sampler Board. R1012 and trim pot R1013 allow compensation for the series resistance of L2010. Resistor R1010 (2 k Ω) and capacitor C1010 (10 pF) are a damping network to prevent ringing after the test pulses. # **Calibration** #### Introduction This chapter is divided into the *Calibration Performance Check* and *Additional Checks and Adjustment Procedures*. The *Calibration Performance Check* is a series of checks to compare the instrument parameters to the published specifications. This procedure is similar to the *Operator Performance Check* (Chapter 2), but additionally lists actions to take if the Calibration Performance Check is not met. The *Adjustment Procedures* are a series of steps designed to bring the instrument up to standards after repair or performance check. # **Calibration Performance Check** The purpose of this procedure is to assure that the instrument is in good working condition and should be performed on an instrument that has been serviced or repaired, as well as at regular intervals. This procedure is not intended to familiarize you with the instrument. If you are not experienced with this instrument, you should read the Operation chapter of this manual before going on with these checks. If the instrument fails any of these tests, it should be calibrated or otherwise serviced. Many failure modes affect only some functions of the instrument. #### **Equipment Required** | Equipment | Performance Required | Tek Part Number | |----------------------------------|--------------------------|-----------------| | 50 Ω precision terminator | ±1% | 011–0123–00 | | 10-ft measured cable | 93 Ω, V _P .84 | 012–1351–00 | #### **Getting Ready** Disconnect any cables from the front panel CABLE connector. Connect the instrument to a suitable power source (a fully charged optional battery or AC line source). If you are using AC power, make sure the fuse and power selector switch on the rear panel are correct for the voltage you are using (115 VAC requires a different fuse than 230 VAC). #### **Metric Instruments** Option 05 (metric) instruments default to m/div instead of ft/div. You can change this in the Setup menu, or you may use the metric numbers provided. To change the readings to ft/div, press the MENU button. Scroll down to *Distance/Div is: m/div* and press MENU again. That menu line will change to *Distance/Div is: ft/div*. Exit by pressing MENU until the instrument returns to normal operation. If the instrument power is turned off, this procedure must be repeated when the instrument is again powered up. The metric default can be
changed to standard default. See the *Maintenance* chapter of this manual for details. # **Display Module Check** #### **Liquid Crystal Display** 1. Pull the POWER switch on the front panel. If a message does not appear on the display within a few seconds, turn the instrument off. If start-up assistance needed, Push MENU button. 1503C ROM version x.xx Ethernet Copyright 1987, 1988 Tektronix Redmond, OR Figure 6–1: Typical Start-Up Display **CAUTION**. There are some failure modes that could permanently damage the LCD if the power is left on more than a minute or so. **2.** Observe that the LCD characters and waveform are legible. If the LCD is too dark or smeared, or if the display has patches of low contrast, refer to the *Adjustments* section of this chapter. Figure 6–2: Waveform on the Display **NOTE**. If the LCD does not appear to be working properly, refer to the Troubleshooting section in the Maintenance chapter as well as the Circuit Description chapter of this manual. #### **EL Backlight** The EL backlight should come on with power up. The LCD will have a light-green glow. - **1.** Press MENU. - **2.** Use the $\frac{\Delta}{\nabla}$ POSITION control to scroll to Setup Menu. - 3. Press MENU again. - **4.** Use the $^{\Delta}_{\nabla}$ POSITION control to scroll to Light is: ON. Exit Setup Menu Acquisition Control Menu Vertical Scale is: Decibels Distance/Div is: ft/div → Light is: ON Move $\stackrel{\triangle}{\nabla}$ Position to select, then push MENU button #### Figure 6–3: Setup Menu - **5.** Press MENU. The EL backlight should go off and the menu line will change to Light is: OFF. - **6.** Scroll to Light is: OFF and press MENU to turn the light back on. - 7. Press MENU again to exit the Setup Menu. - **8.** Press MENU again to exit the Main Menu. You should be able to read the LCD in all conditions of illumination, from full sunlight to a darkened room. The EL backlight might very gradually begin to decrease in brightness after approximately 3,000 hours of use. **NOTE**. If the EL Backlight is dim or does not work properly, refer to the Troubleshooting section or the EL Backlight Replacement section in the Maintenance chapter of this manual. ### **Front Panel Check** If the instrument fails any of these checks, measurements corresponding to the failed control might be inaccurate or unobtainable. #### **Presets and Menu Access** **1.** Set the front-panel controls: CABLE No connection IMPEDANCE Full CW (clockwise) NOISE FILTER Full CW VERT SCALE Default (see note below) $\begin{array}{ll} \text{DIST/DIV} & \text{Full CW} \\ \text{PULSE WIDTH} & \text{Full CW} \\ \text{V}_{\text{P}} & .30 \\ \text{POWER} & \text{Off} \end{array}$ **NOTE**. A default setting is where the instrument will be set when power is switched on. For example, VERT SCALE will always be 0.00 dB when the instrument is powered on. - 2. Turn POWER on. Wait for initialization and normal operation display. - 3. Press MENU. - **4.** Use the $\frac{\Delta}{\nabla}$ POSITION control to scroll to Diagnostics Menu. Return to Normal Operation Help with Instrument Controls Cable Information Menu Setup Menu Diagnostics Menu View Stored Waveform Settings Option Port Menu Ethernet Menu ---------- Figure 6-4: Main Menu 5. Press MENU. This will display the Diagnostics Menu. Move $\stackrel{\triangle}{\forall}$ Position to select, then push MENU button Figure 6–5: Diagnostics Menu - **6.** Use the $\frac{\Delta}{\nabla}$ POSITION control to scroll to Front Panel Diagnostic. - **7.** Press MENU. This will display the Front Panel Diagnostics. #### **Pushbutton Switches** 1. Press VIEW INPUT. The LCD switch reading should change to 1 (see Figure 6–6, third line of text). Figure 6–6: Front Panel Diagnostic Display - **2.** Press VIEW STORE. The LCD switch reading should change to 2. - **3.** Press VIEW DIFF. The LCD switch reading should change to 3. - **4.** Press STORE. The LCD switch reading should change to 4. #### **Rotating Controls** - **1.** Rotate IMPEDANCE counterclockwise to its far stop. The LCD switch reading should be 5. - **2.** Slowly rotate this control clockwise to its far stop. Each position should increase the switch reading one count, starting at 5 and ending with 8. - **3.** Rotate NOISE FILTER counterclockwise to VERT SET REF. The switch reading on the display should be 9. - **4.** Slowly rotate this control clockwise to its far stop. Each position should increase the switch reading one count, starting at 9 and ending with 18. - **5.** Rotate DIST/DIV counterclockwise to VERT SET REF. The switch reading on the display should be 19. - **6.** Slowly rotate this control clockwise to its far stop. Each position should increase the switch reading one count, starting at 19 and ending with 30. - 7. The display should currently show a V_P of 0.30. Slowly rotate the left V_P control to full clockwise. Each click should correspond to the front-panel control setting. - **8.** Rotate the right V_P control to full clockwise. Again, the LCD reading should match the front-panel control setting. The final reading with both controls fully clockwise should be 0.99. Figure 6–7: Front Panel Diagnostic Display - **9.** Rotate PULSE WIDTH counterclockwise to its far stop. The switch reading should be 31. - **10.** Slowly rotate this control clockwise to its far stop. Each position should increase the switch reading one count, starting at 31 and ending with 35. - 11. Rotate the POSITION control, slowly in either direction. The bar graph shown on the display represents the two elements of each control. The readings to the right of the bar graph represent numbers used by the instrument to calculate the position of the knob. As the control is rotated, these values and the bar graph will change. The lower value in each column should be between 0 and 10 while the higher number is between 245 and 255. Figure 6-8: Front Panel Diagnostic Display - 12. Rotate the \triangle POSITION control slowly in either direction. The lower value in each column should be between 0 and 10 while the higher number is between 245 and 255. - **13.** Rotate the VERT SCALE control slowly in either direction. The lower value in each column should be between 0 and 10 while the higher number is between 245 and 255. #### **Thermistor** This is a numerical reading from the thermistor located on the LCD. If it is not operating properly, the LCD heater might not come on in cold environments. This could result in slow or unreadable displays. 1. The displayed temp reading should be between 50 and 90, depending on the ambient temperature. If the thermistor is defective, the reading will be near 0 or 255. Figure 6–9: Front Panel Diagnostic Display **2.** Press MENU repeatedly until the instrument returns to normal operation. #### Conclusion If any of the controls or functions are defective or indicate erratic response, the function affected by that control could be in error. The defective control should be replaced. See the *Maintenance* chapter of this manual. 1503C MTDR Service Manual 6–7 # Horizontal Scale (Timebase) Check If the instrument fails this check, it must be repaired before any distance measurements are made with it. 1. Set the front-panel controls: | CABLE | No connection (see text) | |--------------|--------------------------| | IMPEDANCE | 93Ω | | NOISE FILTER | 1 avg | | VERT SCALE | 10.00 dB | | DIST/DIV | 5 ft/div | | PULSE WIDTH | 2 ns | | V_{P} | .99 | | | | 2. Turn on the instrument. The display should look very similar to Figure 6–10. Figure 6-10: Waveform on the Display with No Cable Attached **3.** Connect the 10-ft test cable to the front-panel CABLE connector. The display should look like Figure 6–11. **NOTE**. If a cable other than the 10-ft test lead with a V_P other than .84 is used, the distance numbers in this check will vary. Figure 6-11: Waveform on the Display with 10-ft Cable Attached **4.** Using the ▷ POSITION control, set the cursor on the rising edge of the reflected pulse. Figure 6-12: Cursor on Rising Edge of Reflected Pulse at 5 ft/div **5.** Change the DIST/DIV to 1 ft/div and again place the cursor on the rising edge of the reflected pulse. The distance window should read between 11.30 and 12.20 ft. Figure 6–13: Cursor on Rising Edge of Reflected Pulse at 1 ft/div **6.** Change the V_P to .84 and reposition the cursor to the rising edge of the reflected pulse. The distance window should read between 9.70 and 10.3 ft. Figure 6-14: Cursor on Rising Edge of Reflected Pulse with Vp at .84 - 7. Remove the 10-ft cable and connect the 50 Ω terminator. - **8.** Set the DIST/DIV control to 5000 ft/div. - **9.** Change the PULSE WIDTH to 1000 ns. - **10.** Rotate the [¬]POSITION control clockwise until the display distance window shows a distance greater than 50,000 ft. The waveform should remain flat from zero to this distance. Figure 6-15: Flatline Display to >50,000 ft **NOTE**. If the Timebase does not appear to be working properly, refer to the Circuit Descriptions chapter and the Troubleshooting section of the Maintenance chapter of this manual. ### **Vertical Position (Offset) Check** If the instrument fails only this check, it can be used but should be serviced. Not all waveforms will be viewable at all gain settings. **1.** Set the front-panel controls: $\begin{array}{lll} \text{CABLE} & 50 \ \Omega \text{ terminator} \\ \text{IMPEDANCE} & 50 \ \Omega \\ \text{NOISE FILTER} & 1 \text{ avg} \\ \text{VERT SCALE} & 0.00 \text{ dB} \\ \text{DIST/DIV} & (\text{see text}) \\ \text{PULSE WIDTH} & 2 \text{ ns} \\ \text{Vp} & .99 \end{array}$ - **2.** Set the $\triangleleft \triangleright$ POSITION control so the distance window reads -2.00 ft. - 3. Set DIST/DIV to 1 ft/div. - **4.** Using the $^{\Delta}_{\nabla}$ POSITION control, verify that the entire waveform can be moved upward past the center graticule line. **5.** Remover the terminator. Figure 6–16: Waveform at Top of the Display 6. Using the △POSITION control, verify that the
entire waveform can be moved to the very bottom of the display. The top of the pulse should be lower than the center graticule line. Figure 6–17: Waveform at Bottom of the Display 7. Center the pulse in the display. The pulse should be about two divisions high. Figure 6–18: Waveform at Center of the Display **NOTE**. If the instrument fails this check, refer to the Circuit Descriptions chapter and the Troubleshooting section of the Maintenance chapter of this manual. #### **Noise Check** If the instrument fails this check, it might still be usable for measurements of large faults that do not require a lot of gain. A great deal of noise reduction is available with the NOISE FILTER control. **1.** Set the front-panel controls: | CABLE | 50Ω terminator | |--------------|------------------------| | IMPEDANCE | 50Ω | | NOISE FILTER | 1 avg | | VERT SCALE | 0.00 dB | | DIST/DIV | 50 ft/div | | PULSE WIDTH | 2 ns | | V_P | .99 | | | | 2. Turn the ▷ POSITION control until the distance window reads between 200.00 and 250.00 ft. Figure 6–19: Distance Moved Beyond Trailing Edge of Pulse - **3.** Change DIST/DIV to 1 ft/div. - **4.** Using the VERT SCALE control, set the gain to 57 dB. - 5. Use the $\frac{\Delta}{\nabla}$ POSITION control to keep the waveform centered on the display. Figure 6-20: Noise with Gain at 57 dB - **6.** Press MENU. - 7. Using the $\frac{\Delta}{\nabla}$ POSITION control, scroll to *Diagnostics Menu*. - 8. Press MENU again. - **9.** Using the same procedure, select *Service Diagnostic Menu*, then *Noise Diagnostic*. - **10.** Read the results on the display. Figure 6–21: Noise Diagnostic Display **NOTE**. If the instrument does not meet this specification, refer to the Circuit Descriptions chapter and the Troubleshooting section of the Maintenance chapter of this manual. **11.** Press MENU once to return to the *Service Diagnostic Menu*. Do not exit from the *Service Diagnostic Menu* because you will use it in the next check. 1503C MTDR Service Manual 6–13 # **Impedance Check** If the instrument fails this check, it should not be used for loss or impedance measurements. **1.** While in the *Service Diagnostic Menu*, select the *Impedance Diagnostic* and follow the directions shown on the display. Exit Service Diagnostic Menu Sampling Efficiency Diagnostic Noise Diagnostic → Impedance Diagnostic Offset/Gain Diagnostic RAM/ROM Diagnostics Timebase is: Normal – Auto Correction Move ⇔Position to select, then push MENU button Figure 6-22: Service Diagnostic Menu **2.** Press MENU once to return to the *Service Diagnostic Menu*. Do not exit from the *Service Diagnostic Menu* because you will use it in the next check. ## Offset/Gain Check If the instrument fails this check, it should not be used for loss or impedance measurements. **1.** While in the *Service Diagnostic Menu*, select the *Offset/Gain Diagnostic* and follow the directions shown on the display. Exit Service Diagnostic Menu Sampling Efficiency Diagnostic Noise Diagnostic Impedance Diagnostic → Offset/Gain Diagnostic RAM/ROM Diagnostics Timebase is: Normal – Auto Correction Move △ Position to select, then push MENU button Figure 6–23: Service Diagnostic Menu **2.** There are five screens of data presented in this diagnostic. The Pass/Fail level is 3% for worst case. **NOTE**. The 48 dB step might fail intermittently. If a more accurate reading is desired, TP9041 on the Main Board or TP1060 on the Pulser/Sampler Board must be grounded during the check. See the Maintenance chapter for the case and EMI shield removal instructions. **3.** Press MENU once to return to the *Service Diagnostic Menu*. Do not exit from the *Service Diagnostic Menu* because you will use it in the next check. ## **RAM/ROM Check** If the instrument fails this check, various functions might be affected. Without the RAM/ROM functions operating correctly, it is doubtful you would have gotten this far. This check will give you assurance that the RAM/ROM circuits are operating properly. **1.** In the *Service Diagnostic Menu*, select the *RAM/ROM Diagnostics*. Exit Service Diagnostic Menu Sampling Efficiency Diagnostic Noise Diagnostic Impedance Diagnostic Offset/Gain Diagnostic RAM/ROM Diagnostics Timebase is: Normal – Auto Correction Move $\stackrel{\Delta}{\nabla}$ Position to select, then push MENU button #### Figure 6–24: Service Diagnostic Menu - **2.** Press MENU. The diagnostic is automatic and will display the result on the LCD. - **3.** Turn the instrument off, then on again. This will reset it for the next check. **NOTE**. If the instrument fails any of the last three checks, refer to the Circuit Descriptions chapter and the Troubleshooting section of the Maintenance chapter of this manual. # **Pulse Balance Check** If the instrument fails this check, the pulse balance might be too small to be useful at some ranges. It might also be a clue to problems in the pulser/sampler board. 1. Set the front-panel controls: | CABLE | no connection | |-------------|---------------| | IMPEDANCE | 50Ω | | VERT SCALE | 5.00 dB | | DIST/DIV | 10 ft/div | | PULSE WIDTH | 1000 ns | | V_{P} | .99 | - **2.** Using the $\triangleleft \triangleright$ POSITION control, adjust the distance window to read -2.00 ft. - 3. Increase DIST/DIV to 100 ft/div. - **4.** Center the pulse on the display. - **5.** Verify that the pulse is between 4.5 and 6.5 divisions high. Figure 6–25: Pulse Appx. Five Divisions High - **6.** Press STORE. - 7. Press VIEW STORE. - **8.** Change IMPEDANCE to 75 Ω . - **9.** Verify that no more than 0.5 dB gain is needed to equalize the current waveform and the stored waveform. **NOTE**. Use the $\frac{\triangle}{\nabla}$ POSITION control to move the current waveform slightly for easier comparison. Figure 6–26: Current Waveform Shifted Slightly from Stored Waveform - **10.** Change IMPEDANCE to 93 Ω . - 11. Verify that no more than 0.5 dB gain is needed to equalize the current waveform and the stored waveform. - **12.** Change IMPEDANCE to 125 Ω . - **13.** Verify that no more than 0.5 dB gain is needed to equalize the current waveform and the stored waveform. - **14.** Press STORE to return to normal viewing mode and erase the stored waveform. **NOTE**. If the instrument fails any portion of this check, refer to the Circuit Descriptions chapter for help in troubleshooting the pulser/sampler board. ## **Pulse Width Check** If the pulse width is out of specification, resolution and range might be affected. 1. Set the front-panel controls: $\begin{array}{lll} \text{CABLE} & 50 \ \Omega \ \text{terminator} \\ \text{IMPEDANCE} & 50 \ \Omega \\ \text{NOISE FILTER} & 1 \ \text{avg} \\ \text{VERT SCALE} & \text{see text} \\ \text{DIST/DIV} & 1 \ \text{ft/div} \\ \text{PULSE WIDTH} & 2 \ \text{ns} \\ \text{Vp} & .99 \\ \end{array}$ **2.** Using the \triangleleft POSITION control, set the distance window to -2.00 ft. 1503C MTDR Service Manual 6–17 Figure 6-27: Initial Pulse - **3.** Adjust VERT SCALE for a pulse height of six divisions. - **4.** Keep the pulse centered on the display with the $\frac{\Delta}{\nabla}$ POSITION control so the pulse is three divisions above and three below the center horizontal graticule line. Figure 6-28: Pulse Adjusted to Six Divisions High - **5.** Turn NOISE FILTER to HORZ SET REF. - **6.** Position the cursor at the point where the leading edge of the pulse crosses the center horizontal graticule line. - **7.** Press STORE. - **8.** Set NOISE FILTER back to 1 avg. Figure 6-29: Cursor on Leading Edge at Center Graticule **9.** Using the $\triangleleft \triangleright$ POSITION control, position the cursor at the point where the trailing edge of the pulse crosses the center horizontal graticule line. Figure 6–30: Cursor on Trailing Edge at Center Graticule **10.** Read the distance in the distance window. The pulse widths and allowable tolerances are listed in the table below. | PULSE | DIST/DIV | MINIMUM \triangle (ft) | $MAXIMUM \triangle (ft)$ | |---------|----------|--------------------------|--------------------------| | 2 ns | 1 | 0.500 | 1.460 | | 10 ns | 1 | 4.390 | 5.320 | | 100 ns | 10 | 43.900 | 53.220 | | 1000 ns | 100 | 439.000 | 537.000 | 11. Repeat the above procedures for each pulse width. **NOTE**. If the instrument fails any portion of this check, refer to the Circuit Descriptions chapter for help in troubleshooting the pulser/sampler board. 12. Turn the instrument off, then on again. This will reset it for the next check. # **Auto Pulse Select Check** If the auto pulse circuit is not working, the pulse width will have to be manually selected. **1.** Set the front-panel controls: | 50Ω terminator | |------------------------| | 50Ω | | 1 avg | | 0.00 dB | | 1 ft/div | | Auto | | .99 | | | **NOTE**. The instrument should <u>not</u> be in HORZ SET REF (\triangle mode). 2. Set the distance window first to -2.00 ft to make sure the pulse is on screen, then to 0.00 ft. The distance window directly affects which pulse that Auto Pulse selects. Figure 6-31: Initial Pulse with Cursor at 0.00 ft **3.** Slowly turn DIST/DIV and observe the pulse width reading on the display, as well as the actual pulse. The readings should increase and the pulse width should widen. Readings should match the table below. | DIST / DIV | PULSE WIDTH | DIST / DIV | PULSE WIDTH | |------------|-------------|------------|-------------| | 1 ft | 2 ns | 100 ft | 100 ns | | 2 ft | 2 ns | 200 ft | 100 ns | | 5 ft | 2 ns | 500 ft | 1000 ns | | 10 ft | 2 ns | 1000 ft | 1000 ns | | 20 ft | 10 ns | 2000 ft | 1000 ns | | 50 ft | 10 ns | 5000 ft | 1000 ns | Figure 6-32: Waveform on Auto Pulse Select **NOTE**. If the Auto Pulse Select check fails, refer to the Circuit Descriptions chapter describing the software of the instrument. # **Jitter Check** 1. Set the front-panel controls: | 50 Ω terminator | |------------------------| | 50Ω | | 1 avg | | 0.00 dB | | 1 ft/div | | 2 ns | | .99 |
| | **2.** Center the rising edge of the pulse on the center horizontal graticule line. Figure 6–33: Initial Pulse Centered on Horizontal Graticule **3.** Increase the VERT SCALE control to 30.00 dB. Figure 6-34: Gain Increased to 30.00 dB **4.** Verify that the leading edge of the pulse moves less than one minor division horizontally (< 0.2 ft). **NOTE**. Use the Max Hold function found in the Acquisition Control menu within the Setup Menu. It can simplify this measurement for you by displaying jitter accumulating in the waveform over a period of time (more than 30 seconds). See the Operation chapter for directions on using Max Hold. Figure 6-35: Jitter Apparent Using Max Hold **NOTE**. If the instrument does not pass this check, potential problem areas are the Pulser/Sampler board and the Timebase circuitry. Refer to the Circuit Descriptions chapter and the Maintenance chapter of this manual. **5.** Turn the instrument off, then on again. This will reset it for the next check. # **Aberrations Check** If the aberrations are out of specification, small discontinuities might not be seen and accuracy of the instrument might be affected. - **1.** Turn the ^{⊲⊳} POSITION control counterclockwise until the display distance window reads less than 20.00 ft. - 2. Set the DIST/DIV control to 1 ft/div. - **3.** Turn the ^{⊲⊳} POSITION control counterclockwise until the distance window reads –2.00 ft. - **4.** Set the front-panel controls: | IMPEDANCE | 50Ω | |--------------|-------------| | NOISE FILTER | 1 avg | | VERT SCALE | 0.00 dB | | PULSE WIDTH | 2 ns | | V_{P} | .99 | Figure 6-36: Cursor at -2.00 ft - 5. Connect the 50 Ω precision terminator to the front panel. - **6.** Turn the NOISE FILTER control completely counterclockwise to the VERT SET REF position. - 7. Using VERT SCALE, increase the height of the pulse to four major divisions. - **8.** Press STORE. - **9.** Turn NOISE FILTER back to 1 avg. Figure 6-37: Pulse Height at Four Divisions at 1 ft/div - 10. Using the $\frac{\Delta}{\nabla}$ POSITION control, place the baseline of the waveform on the center graticule. - 11. Increase VERT SCALE to 25.00 dB. Figure 6-38: Gain Increased to 25.00 dB - **12.** Using the △▷ POSITION control, scroll along the waveform and verify the aberrations are less than four divisions high out to 10 feet, excluding any aberration that is part of the initial pulse. - 13. Return the cursor to -2.00 ft. - 14. Turn NOISE FILTER back to VERT SET REF again. - 15. Set DIST/DIV to 2 ft/div. - **16.** Turn PULSE WIDTH to 10 ns. - 17. Adjust the pulse height to four major divisions. - 18. Press STORE. - **19.** Return the NOISE FILTER control to 1 avg. Figure 6-39: Pulse Height at Four Divisions at 2 ft/div - **20.** Move the baseline of the waveform to the center graticule. - 21. Increase VERT SCALE to 30.00 dB. Figure 6-40: Gain Increased to 30.00 dB - **22.** Using the △▷ POSITION control, scroll along the waveform and verify that all of the aberrations are less than four divisions high out to 30 feet. - 23. Return the cursor to -2.00 ft. - **24.** Turn NOISE FILTER back to VERT SET REF again. - 25. Set DIST/DIV to 50 ft/div. - **26.** Turn PULSE WIDTH to 100 ns. - **27.** Adjust the pulse height to four major divisions. - 28. Press STORE. - **29.** Return the NOISE FILTER control to 1 avg. Figure 6-41: Pulse Height at Four Divisions at 50 ft/div - **30.** Using the \triangle POSITION control, place the baseline of the waveform on the center graticule. - 31. Increase VERT SCALE to 30.00 dB. Figure 6-42: Gain Increased to 30.00 dB - **32.** Using the △▷ POSITION control, scroll along the waveform and verify that all of the aberrations are less than four divisions high out to 300 feet. - 33. Return the cursor to -2.00 ft. - **34.** Turn NOISE FILTER back to VERT SET REF again. - 35. Set DIST/DIV to 500 ft/div. - 36. Turn PULSE WIDTH to 1000 ns. - **37.** Adjust the pulse height to four major divisions. - 38. Press STORE. - **39.** Return the NOISE FILTER control to 1 avg. Figure 6-43: Pulse Height at Four Divisions at 500 ft/div - **40.** Using the \triangle POSITION control, place the baseline of the waveform on the center graticule. - 41. Increase VERT SCALE to 30.00 dB. Figure 6-44: Gain Increased to 30.00 dB **42.** Using the ▷ POSITION control, scroll along the waveform and verify that all of the aberrations are less than four divisions high out to 3000 feet. **NOTE**. If the instrument fails the aberrations checks, potential problems exist in the Pulser/Sampler circuitry. Refer to the Circuit Descriptions chapter and the Troubleshooting section of the Maintenance chapter of this manual. # **Pulse Amplitude Check** If the instrument does not pass the Pulse Amplitude check, range and the Impedance Diagnostic might be affected. Additionally, loss measurements might not be accurate. **1.** Set the 1503C front-panel controls: 1503C MTDR Service Manual 6–27 **CABLE** 10-ft test cable **IMPEDANCE** 50Ω NOISE FILTER 1 avg VERT SCALE 10.00 dB DIST/DIV 1 ft/div PULSE WIDTH 1000 ns V_{P} .66 **POWER** On - 2. On the far end of the test cable, attach the 50 Ω through-terminator. - **3.** Then attach the through-terminator to Channel 1 of the oscilloscope. - **4.** Set the scope controls: $\begin{array}{ll} \mbox{Vertical} & 0.5 \mbox{ Volts/div} \\ \mbox{Horizontal Timing} & 0.2 \mbox{ } \mu s \\ \mbox{Trigger} & - slope \end{array}$ - **5.** Using the \triangleleft POSITION control, set the distance window to -2.00 ft. - **6.** Change DIST/DIV to 100 ft/div. - **7.** Measure the pulse height on the scope. Figure 6-45: Oscilloscope Waveform Figure 6-46: 1503C Waveform of 1000-ns Pulse **8.** Using VERT SCALE, adjust the pulse height on the 1503C to match the pulse height on the scope. The pulse height on both instruments should be between 4.5 and 5.5 divisions. The 1503C is now set for 0.5 Volts per division. **NOTE**. Once the 1000 ns pulse has been checked, the 1503C display is used to confirm the rest of the pulse widths. If desired, however, the scope can be used. While pulses can be measured directly with the scope, a fairly fast (500 MHz) scope is necessary for the shorter pulses. - **9.** Change PULSE WIDTH to 100 ns. - 10. Change DIST/DIV to 10 ft/div. - 11. Verify that the pulse height on the 1503C is between 4.5 and 5.5 divisions. Figure 6-47: 1503C Waveform of 100-ns Pulse 12. Change PULSE WIDTH to 10 ns. - **13.** Change DIST/DIV to 1 ft/div. - **14.** Verify that the pulse height on the 1503C is between 4.5 and 5.5 divisions. - **15.** Change PULSE WIDTH to 2 ns. - 16. Leave DIST/DIV at 1 ft/div. - 17. Verify that the pulse height on the 1503C is between 4 and 6 divisions. Figure 6-48: 1503C Waveform of 2-ns Pulse # Option 04/07: YT-1/YT-1S Chart Recorder Check If the instrument does not pass this check, chart recordings might not be possible. - 1. Access the *Chart Diagnostics Menu* found under the *Diagnostics Menu*. - 2. Scroll to *Head Alignment Chart* and follow the directions. - **3.** Press MENU to exit this diagnostic. Figure 6-49: Head Alignment Chart Print **4.** There should be approximately six inches of narrow-spaced lines and six inches of wide-spaced lines. The total length of both should be between 10.87 and 12.76 inches. Fold the paper at the last narrow-spaced line and the two ends should be of equal length (half narrow, half wide). **NOTE**. If the chart recorder does not pass this check, refer to the YT-1/YT-1S Chart Recorder Instruction Manual (070–6270–xx) for service information. # **Option 05: Metric Default Check** Option 05 requires no check other than to turn on the instrument and see if it displays in meters. Instructions for changing the default can be found in the *Maintenance* chapter of this manual. # Option 06: Ethernet® Adapter Checks **NOTE**. If your instrument does not have Option 06, proceed to the Final Performance Check. This procedure is to check the Option 06 circuit board after it has been serviced or repaired. If the instrument does not pass this check, measurements might be affected for both Ethernet systems and standard cable tests. Adjustments for Option 06 are included at the end of this section. This procedure should be performed at the time the standard instrument performance checks are performed or whenever you suspect possible incorrect operation of the Ethernet option. Correct operation of the Option 06 depends on correct operation of the basic instrument. ## **Equipment Required** | Equipment | Example or Tek P/N | |--------------------|--------------------| | Digital Multimeter | DM502 | | BNC T-connector | Tek 103–0030–xx | ## **Equipment Setup** - 1. Connect a BNC T-connector to the front panel CABLE connector of the 1503C. - **2.** On one side of the adapter, connect a 50 Ω terminator. - **3.** Connect the other side to the digital multimeter. 1503C MTDR Service Manual 6–31 Figure 6-50: Equipment Setup **4.** Set the 1503C front-panel controls: | IMPEDANCE | 50Ω | |--------------|-------------| | NOISE FILTER | 1 avg | | VERT SCALE | 0.00 dB | | PULSE WIDTH | 2 ns | (settings for other controls do not affect this check) - 5. Turn POWER on. - **6.** Press MENU. - 7. Scroll to Ethernet Menu. Figure 6–51: Main Menu - **8.** Press MENU again. - **9.** Scroll to 50 Ω termination is: Off. - **10.** Press MENU. This will change that selection to 50Ω termination is: On. Exit Ethernet Menu 50 Ω DC termination is: On Single Sweep with Carrier is: Off Carrier Test is: Off Collision Test is: Off Move $\stackrel{\triangle}{\nabla}$ Position to select, then push MENU button #### Figure 6-52: Ethernet Menu - **11.** Exit the menus. Returning to normal operation mode activates the menu selection. - 12. Set the DMM to measure Volts DC. - **13.** Verify that the voltage measured is less than 0.2 VDC. ## Carrier Offset Voltage Check - **1.** Re-enter the *Ethernet Menu*. - 2. Scroll to Carrier Test is: Off. - 3. Press
MENU. This will change that selection to Carrier Test is: On. Exit Ethernet Menu 50 Ω DC termination is: On Single Sweep with Carrier is: Off → Carrier Test is: On Collision Test is: Off Move ⇔ Position to select, then push MENU button #### Figure 6-53: Ethernet Menu - **4.** Exit the menus. Returning to normal operation mode activates the menu selection. - 5. Verify that the voltage measured is between -0.9 VDC and -1.2 VDC. ## Collision Offset Voltage Check - **1.** Re-enter the *Ethernet Menu*. - 2. Scroll to Collision Test is: Off. - 3. Press MENU. This will change that selection to Collision Test is: On. Exit Ethernet Menu 50 Ω DC termination is: On Single Sweep with Carrier is: Off Carrier Test is: On → Collision Test is: Off Move ♦ Position to select, then push MENU button Figure 6–54: Ethernet Menu - **4.** Exit the menus. Returning to normal operation mode activates the menu selection. - 5. Verify that the voltage measured is between -1.55 VDC and -1.85 VDC. - **6.** Write your results on a piece of paper because you will use this reading in the *Impedance Check*. - 7. Remove the 50 Ω terminator from the T-connector. - **8.** The voltage displayed should now be between -3.2 VDC and -3.8 VDC. - **9.** Also write this reading down for the next check. - 10. Enter the Ethernet Menu again. Figure 6-55: Ethernet Menu - **11.** Scroll to 50 Ω termination is: On. - 12. Press MENU. This will change that selection to 50Ω termination is: Off. - **13.** Exit the menus. Returning to normal operation mode activates the menu selection. - **14.** The DC voltage should drop to a nominal zero Volts. If it remains at -1.7 VDC, the relay is not working correctly on the option board and requires service. #### **DC Impedance Check** - **1.** Enter the *Ethernet Menu*. - **2.** Scroll to 50 Ω termination is: Off. - **3.** Press MENU. This will change that selection to 50Ω termination is: On. Figure 6–56: Ethernet Menu - **4.** Exit the menus. Returning to normal operation mode activates the menu selection. - **5.** Set the DMM to measure resistance. - **6.** Measure the output resistance of the 1503C by connecting the DMM to one side of the BNC T-connector. Note this number. - 7. Reverse the leads and make another measurement. Note this number. - **8.** Add the two numbers and divide by two to get the average. The result should be between 49 Ω and 51 Ω . An alternate method is to measure the carrier or collision DC voltage, as follows: - 1. Measure the resistance on the BNC T-connector with the 50 Ω terminator connected to the opposite side - 2. Disconnect the terminator and measure the resistance again. **3.** The DC output impedance can then be calculated as follows: $$Zo = \left[\left(\frac{Vo}{Vt} \right) - 1 \right] * Zt$$ Where: Zo is the output impedance Vo is the open circuit voltage Vt is the terminated voltage and Zt is the 50 Ω terminator resistance. **NOTE**. If the instrument passes these checks, the Option 06 board is functioning correctly. For adjustments, refer to the procedure immediately following this. Any other problems will require troubleshooting the circuitry. Refer to the Circuit Descriptions and Maintenance chapters of this manual. # **Adjustment Procedures** ## **Equipment Required** | Equipment | Performance Required | Example or Tek P/N | |------------------------------|----------------------|--------------------------| | Digital Multimeter | Range: 0 to 200 VDC | DM502 | | Oscilloscope | > 10 MHz, 7.5 V/cm | Tek 2465B or equivalent | | Variable AC Source | with power meter | GenRad W10MT3W or equiv. | | Variable DC Power Supply | 0 to 14 VDC, 3 A | | | 50 Ω Feed-through Terminator | | 011-0049-01 | | 3-foot Coaxial Cable | 50 Ω | 012–1350–00 | #### **Metric Instruments** Metric default timing is made by moving a jumper on the back of the Front Panel Board (see *Maintenance* chapter of this manual). To make the calibration easier, this jumper will be moved to the standard timing position during calibration, then moved back to the metric position when calibration is completed. #### **Before Starting** On early instruments, there is an adjustment on the Main Board used for timebase compensation, identified as R2034. Because of a slight crosstalk effect between circuits, measurements of a certain length cable would show a small glitch. This adjustment eliminated the problem and subsequent improvements in circuit board design eliminated the need for the adjustment. If your instrument has this adjustment, it has been set at the factory and requires no further attention. Figure 6-57: Circuit Board Locations in the Instrument # **Visual Inspection** If any repairs are made to the instrument, or if it has been disassembled, we recommend a visual inspection be made. - 1. Check all screws for tightness and that the screw heads are not burred or rounded. - 2. Set the line voltage switch on the rear panel to 110V and check for the proper fuse (0.3 A). - **3.** Check if the LCD has been cleaned on the outside and the implosion shield of the front panel has been cleaned on the inside. - **4.** Check that the knobs and buttons work properly. The NOISE FILTER, DIST/DIV, and both V_P knobs have detents; all others should rotate smoothly. Check that the knobs are tight (no loose set screws). Check that the set screw on the POWER switch shaft is tight. - 5. Check the cables for proper connection polarity and tightness. Make sure the cables on the front of the Main Board come down from the plug into the instrument instead of curving toward the outside. All cables should have the exposed ends away from the metal chassis. - **6.** If any components were replaced by soldering, check for solder balls, excess flux, and wire clippings. Good soldering practices must be followed when repairing this instrument. # **Power Supply Checks and Adjustments** ## **Power-Up Procedure** **1.** Set the front-panel controls: NOISE FILTER 1 avg DIST/DIV 1 ft/div V_P .99 - 2. Make sure the POWER switch is in the OFF position. - **3.** Connect the 115 VAC output of the Variac® into the AC socket on the rear of the 1503C. #### **Voltage Checks** - **1.** Pull the POWER switch to the ON position. - 2. Observe that the power draw does not exceed 4 Watts on the Variac. Figure 6-58: Power Supply Board - **3.** Connect the positive (+) voltmeter probe to TP1020 (+16.6 VDC it might be marked as 15.8 V on some older power supplies). - **4.** Connect the negative (–) probe to TP1010 (ground). Figure 6-59: Power Supply Test Points TP1020 and TP1010 - 5. Verify that the supply voltage is 16.6 VDC and there is a minimal current drawn (< 2W) from the Variac. - **6.** Connect the positive (+) voltmeter probe to TP2030. The negative (-) voltmeter probe should remain connected to ground. The reading should be +16.2 VDC (see following table for tolerances). 1503C MTDR Service Manual 6–39 Figure 6-60: Power Supply Test Point TP2030 | Supply | Range | Test Point | Location | |-----------|--------------------|--------------|--------------------| | +16.2 VDC | +15.9 to +16.4 VDC | TP2030 | Power Supply Board | | +5.0 VDC | +4.85 to +5.25 VDC | Pin 1, J5040 | Main Board | | -5.0 VDC | -4.85 to -5.25 VDC | Pin 3, J5040 | Main Board | | +15.0 VDC | +14.7 to +15.3 VDC | Pin 4, J5040 | Main Board | | -15.0 VDC | -147 to -15.3 VDC | Pin 6, J5040 | Main Board | **7.** Make a mental note of the location where the ribbon cable from the power supply is plugged into the Main Board, then turn the instrument over. **NOTE**. When the instrument is turned over, you will be looking at the top (component side) of the Main Board. Figure 6-61: Connector Plug P5040 and Pins J5040 on Bottom of Main Board The J5040 pins go through the circuit board and appear on the top (component side) of the Main Board. J5040/P5040 is the input from the power supply. The other end of the cable is J1030/P1030 on the Power Supply Board. Measure the voltages on the pins listed in the table and verify the supply voltages. ## Range Check 1. Connect the positive (+) probe to the +16.6 VDC supply (TP1020) on the Power Supply Board. Figure 6-62: Power Supply Test Point TP1020 - 2. Change the AC output voltage on the Variac to 132 VAC. - 3. Verify that the +16.6 VDC supply remains regulated (+16.4 to +16.8 VDC). - **4.** Reduce the Variac output voltage to 90 VAC. - 5. Verify that the +16.6 VDC supply is still regulated (+16.4 to +16.8 VDC). - **6.** Move the positive (+) probe to the +16.2 VDC supply (TP2030) Figure 6-63: Power Supply Test Point TP2030 - 7. Reduce the Variac output voltage until the +16.2 VDC (and the instrument) shut down. This voltage must be lower than 90 VAC. - **8.** Raise the Variac output voltage to 120 VAC. The instrument should remain shut down. - **9.** Turn the 1503C POWER off. # Main Board $\,\pm\,$ 12 VDC Check and Adjust +12 VDC Figure 6-64: Location of Main Board in Instrument - 1. Turn the instrument over to access the Main Board. - **2.** Attach the positive (+) probe from the voltmeter to the + side (facing the edge of the board) of C9031. - **3.** Attach the negative (–) probe to the other side of C9035. Figure 6–65: Main Board Probe Points - **4.** Turn the instrument POWER on and check that less than 4 Watts is drawn from the Variac. - **5.** Adjust R9032 for +12.0 VDC. #### -12 VDC - 1. Move the positive (+) probe to the side of C9035 (the side away from the edge of the board). - 2. Verify that the voltage is -11.8 to -12.2 VDC. - **3.** Verify that the LCD shows the following display: Figure 6–66: Waveform on Display You might have to adjust R1018 (Contrast Adjust) on the Front Panel Board to get a clear display (see *LCD Check and Adjustments* in this section). ## **DC Power Check** - 1. Turn the POWER off. - **2.** Remove the AC plug from the rear panel of the instrument. - **3.** If a battery is present, disconnect the wire from the battery to the Power Supply board. - **4.** Connect an
external 12 VDC power supply into the battery connector (see Figure 6–67, next page). Pins 1 and 4 are ground. Pins 2 and 3 are positive (supply) terminals. - **5.** Adjust the external 12 VDC supply for +11.5 VDC output at the terminals of the battery input. - **6.** Connect a DC ammeter in series with the positive (+) side of the 12 VDC supply. - 7. Turn the power on. The current measurement must not exceed 350 mA. Figure 6-67: Battery Connections to Power Supply Board - **8.** Connect the positive (+) probe of the voltmeter to the front side of CR2012 on the Power Supply Board (this is the large diode next to J2010. The positive probe should be on the non-banded end of the diode). - **9.** Connect the negative probe to ground. Figure 6-68: CR2012 on Power Supply Board **10.** Turn the 1503C POWER on. The instrument should initialize and go into normal operation. The display will be normal except *ac* in the upper left corner will have changed to *bat*. Figure 6-69: Display Showing Power is Battery **11.** Reduce the output voltage of the DC power supply until *bat/low* appears in the upper left corner of the display. Figure 6–70: Display Showing Battery Voltage is Low - 12. Verify that the DC supply voltage is between 10.6 and 11.0 VDC. - 13. Remove the voltmeter probes from the 1503C. - **14.** Remove the external 12 VDC power supply cable from the battery connector. - **15.** Reconnect the battery wire to the Power Supply board and to the battery. - **16.** Connect the AC supply cord to the rear panel. ## **Charging Current Check** (with optional battery) - 1. Turn the POWER off. - 2. Connect a voltmeter across the 4 Ω resistor, R2012, located on the Power Supply Board. - **3.** Connect the positive (+) probe to the side nearest the front panel and the negative (-) probe to the other end. The voltage drop across R2012 should be between 0.4 and 1.2 VDC. Figure 6-71: R2012 on Power Supply Board **4.** Turn the POWER on. The voltage reading across R2012 should change only slightly (\pm 10 mV). **NOTE**. The charging current will vary according to the level of charge already on the battery. With a fully charged battery, the voltage across R2012 should be approximately 0.4 VDC. With a battery below 11 Volts, R2012 should read approximately 1.2 VDC. # **LCD Check and Adjustment** - 1. Turn POWER on. - 2. Push MENU. - **3.** Using the $\frac{\Delta}{\nabla}$ POSITION control, scroll to *Diagnostics Menu*. - 4. Push MENU. - **5.** Scroll to *LCD Diagnostics Menu*. - 6. Push MENU. - 7. Scroll to LCD Alignment Diagnostic. - 8. Push MENU. Figure 6-72: R1018 on Front Panel Board **9.** Observe the LCD as you adjust R1018 (Contrast Adjust) counterclockwise until the entire pattern starts to dim. Figure 6-73: LCD Pattern with Contrast Too Light Figure 6–74: LCD Pattern with Contrast Too Dark **10.** Turn R1018 clockwise until the entire pattern is clear and sharp. 1503C MTDR Service Manual 6–47 Figure 6–75: LCD Pattern Adjusted for Sharpness - **11.** Press MENU once quickly. The ON pixels will be toggled off and the OFF pixels will be toggled on. Watch to see if all the pixels are being activated. - **12.** Once contrast has been set using the LCD pattern, verify it with a normal waveform display. - **a.** Ensure that the instrument has been at 75° F \pm 5° F (25° C \pm 3° C) for at least one hour (operating or non-operating). - **b.** Turn the instrument on and allow it to warm up for at least five minutes. If the instrument was already on (e.g., you are performing this adjustment immediately after steps 1-11), then cycle the power off, then back on again to return it to default settings. - **c.** While a waveform is on the display, adjust R1018 on the Front Panel Board counterclockwise until most of the display has dimmed. Figure 6–76: Waveform with Contrast Too Light - **d.** Start rotating R1018 slowly clockwise until all of the pixels are just visible on the display. If you go too far, restart the adjustments at step c. - **e.** Rotate R1018 one quarter turn clockwise past the point of step d. **NOTE**. It is important to always determine the proper contrast setting by coming from a faded display. It takes a higher threshold voltage to turn a pixel on than it does to turn one off. If it is done from the other direction, the display will be too bright. - **f.** Inspect the display for any bleeding (areas that are too dark) or any fading (areas that are too light). - g. Turn the instrument off. - **h.** After waiting a few seconds, turn the instrument back on. - i. Reinspect the display for bleeding or fading. - **j.** Readjust R1018 if necessary. Figure 6–77: Waveform with Contrast Adjusted Correctly If the Contrast Adjust is set properly, you will be able to see the cursor clearly when it is moved rapidly across the display. If any residual images are made by the cursor movement, they should fade out quickly. **NOTE**. If you are unable to adjust the contrast, or if pixels are not functioning, see the Troubleshooting section in the Maintenance chapter of this manual. ### Pulser/Sampler Voltage Check No front panel adjustments are necessary for this check. 1. Remove the EMI shield covering the Pulser/Sampler Board. Figure 6–78: Location of Pulser/Sampler Board in Instrument Figure 6-79: TP1081 and TP1082 on Pulser/Sampler Board Figure 6-80: VR3020 and VR30212 on Pulser/Sampler Board **2.** Using a voltmeter, verify the voltages at the test points listed in the following table: | Test Point | Voltage | |-------------------|----------------------| | TP1081 | +12 VDC +0.3 VDC | | TP1082 | -12 VDC +0.3 VDC | | Anode of VR3020 | -4.9 VDC to -5.7 VDC | | Cathode of VR3021 | +4.9 VDC to +5.7 VDC | **NOTE**. If you intend to proceed to the Sampling Efficiency Adjustment from this point, leave the EMI shield off. If you are now finished, proceed to step 4 below. **3.** Replace the EMI shield. Be sure to dress the ribbon cable properly in the cutout provided in order to prevent it from being smashed when securing the shield. ### **Sampling Efficiency Adjustment** 1. Set the front-panel controls: **CABLE** no connection **IMPEDANCE** 50Ω **NOISE FILTER** 1 avg VERT SCALE $0.00 \, \mathrm{dB}$ 1 ft/div DIST/DIV **PULSE WIDTH** 2 ns .99 V_{P} **POWER** On - 2. Press MENU. - 3. Scroll to Diagnostics Menu. - 4. Press MENU. - **5.** Scroll to Service Diagnostic Menu. Exit Service Diagnostic Menu Sampling Efficiency Diagnostic Noise Diagnostic Offset/Gain Diagnostic RAM/ROM Diagnostics Timebase is: Normal – Auto Correction Move $\stackrel{\Delta}{\nabla}$ Position to select, then push MENU button Figure 6-81: Service Diagnostic Menu - **6.** Press MENU. - **7.** Scroll to Sampling Efficiency Diagnostic. - **8.** Press MENU. - **9.** Follow the directions on the display. Figure 6-82: Location of Pulser/Sampler Board in Instrument Figure 6-83: Location of R1080 on Pulser/Sampler Board 10. Adjust R1080 on the Pulser/Sampler Board for an efficiency reading of 80%. Figure 6–84: Service Diagnostic Efficiency Readout - 11. If 80% is exceeded when making the adjustment, go back to the minimum reading and slowly move upward again. - **12.** Press MENU to return to normal operations. **NOTE**. If you intend to proceed to the 1st Blow-by Compensation Adjustment from this point, leave the EMI shield off. If you are now finished, proceed to step 13 below. **13.** Replace the EMI shield. Be sure to dress the ribbon cable properly in the cutout provided in order to prevent it from being smashed when securing the shield. ## **1st Blow-By Compensation Adjustment** **1.** Set the front-panel controls: no connection **CABLE IMPEDANCE** 50Ω NOISE FILTER 1 avg VERT SCALE 35.00 dB DIST/DIV 200 ft/div **PULSE WIDTH** 1000 ns V_{P} .99 **POWER** On - 2. Adjust the ▷ POSITION control to center the trailing edge of the pulse on the display. - **3.** Use the $\frac{\Delta}{\nabla}$ POSITION control to center the baseline of the waveform. Figure 6–85: Location of Pulser/Sampler Board in Instrument Figure 6-86: Location of R2097 on Pulser/Sampler Board **4.** While observing the baseline near the trailing edge of the pulse, adjust R2097 (1st Blow-by Compensation) on the Pulser/Sampler Board until the line following the pulse is as flat as possible. Figure 6-87: Over-Compensated Figure 6-88: Under-Compensated Figure 6-89: Correctly Compensated **NOTE**. If you intend to proceed to the Output Impedance Check from this point, leave the EMI shield off. If you are now finished, proceed to step 5 below. **5.** Replace the EMI shield. Be sure to dress the ribbon cable properly in the cutout provided in order to prevent it from being smashed when securing the shield. ## **Output Impedance Check** Figure 6-90: Location of Pulser/Sampler Board in Instrument 1. Set the front-panel controls: | CABLE | see below | |------------------|-------------| | IMPEDANCE | 50Ω | | NOISE FILTER | 1 avg | | VERT SCALE | 0.00 dB | | DIST/DIV | 1 ft/div | | PULSE WIDTH | 2 ns | | V_{P} | .99 | | POWER | Off | Figure 6-91: Location of C3010, TP3020, and TP3030 on Pulser/Sampler Board **2.** If your instrument has a serial number of B035922 or lower, use a small jumper wire to short across C3010 on the Pulser/Sampler Board. If your instrument has a serial number of B035923 or higher, use a small jumper wire to short between TP3030 and TP3020 on the Pulser/Sampler Board. - **3.** Turn POWER on. - 4. Push MENU. - 5. Scroll to Service Diagnostic Menu. - 6. Push MENU. - **7.** Scroll to *Impedance Diagnostic*. Figure 6–92: Main Menu - 8. Push MENU. - **9.** Follow the instructions on the display. - **10.** Note the results of the *Impedance Diagnostic* test and compare them with the table below. 6-57 | Range | Specification | |-------|----------------------| | 50 Ω | 49.50 Ω το 50.50 Ω | | 75 Ω | 74.25 Ω το 75.75 Ω | | 93 Ω | 92.07 Ω το 93.93 Ω | | 125 Ω | 123.75 Ω το 126.25 Ω | - 11. Remove the jumper. - **12.** Press MENU to return to
normal operations. - **13.** Replace the EMI shield covering the Pulser/Sampler board. Be sure to dress the ribbon cable properly in the cutout provided in order to prevent it from being smashed when securing the shield. ### **Option 06: Ethernet® Adapter Adjustments** If your instrument does not have Option 06, proceed to *After Adjustments are Completed*. This procedure is to adjust the Option 06 board after it has been serviced or repaired. - **1.** Make sure the 1503C power is off. - **2.** Because this adjustment requires a critical resistance measurement, note the resistance of the leads used with your DMM. Figure 6-93: L2010, R1011, and R1013 on Option 06 Board - **3.** Connect one lead of the DMM to the output side of L2010 (the jumper wire between the Option 06 Board and the Pulser/Sampler Board). - **4.** Connect the other DMM lead to the relay side of R1011. - 5. Adjust R1013 for a resistance measurement between 49.9 Ω and 50.1 Ω . Do not forget to take into account the DMM lead resistance. - **6.** Double check your measurement, then seal R1013 with a small amount of Humiseal (Tek part 006–1744–xx) or trim-pot glue. ### **After Adjustments are Completed** - **1.** If the instrument is Option 05 (metric), refer to the *Maintenance* chapter to return the metric default jumper to its proper position. - 2. Reinstall the 1503C in its case (refer to the *Maintenance* chapter of this manual). Care should be taken to follow the directions to maintain watertight integrity of the case. - **3.** Turn back to the *Calibration* section of this chapter and perform all those *Performance Checks* that did not require case-off adjustments. ## **Maintenance** #### Introduction This chapter contains information on preventive and corrective maintenance, troubleshooting, panel control assembly procedures, and shipping instructions. Please refer to schematics for physical location of circuits and components. **NOTE**. We recommend that service be performed at an authorized Tektronix Service Center or by a technician skilled in sampling and pulse techniques. #### **Equipment Required** This is a list of common tools needed to accomplish all the maintenance procedures that follow: | 5/16" hex nut driver | Phillips-head screwdriver | |-----------------------|------------------------------------| | 11/32" hex nut driver | Straight-blade screwdriver | | 1/16" hex wrench | Torque driver | | 5/16" open-end wrench | Soldering and desoldering tools | | 7/16" open-end wrench | Cotton swabs, non-woven wipes | | 1/2" open-end wrench | Isopropyl alcohol, LocTite ®, etc. | #### **Preventive Maintenance** Preventive maintenance includes cleaning, visual inspection, and lubrication. A convenient time to perform preventive maintenance is during the periodic performance check/calibration procedure. If the instrument has been subjected to extreme environments or harsh handling, more frequent maintenance might be necessary. #### Cleaning **CAUTION.** Do not use chemical agents that contain benzene, toluene, xylene, acetone, etc., because of possible damage to plastics in the instrument. The exterior case and front panel should be washed gently with mild soap and water. The faceplate in front of the LCD should be cleaned gently with Kendall Webril non-woven wipes (Tek P/N 006-0164-00), or equivalent, moistened with isopropyl alcohol. The interior of the 1503C is protected from dirt and dust as long as the option port and case are intact. However, if interior cleaning is necessary, blow off accumulated dust with low-pressure air and remove the remaining dirt with a soft brush, cotton swab, or pipe cleaner moistened with isopropyl alcohol. #### Lubrication All the switches and potentiometers on the 1503C are sealed from external contaminants and, therefore, require little maintenance and no lubrication. Occasionally, blowing out accumulated dust is all that is needed. #### **Visual Inspection** Obvious defects, such as broken connections, damaged boards, frayed cables, improperly seated components, and heat-damaged components should be corrected first before attempting further troubleshooting. Heat damage usually indicates a deeper problem somewhere in the circuitry and should be traced and corrected immediately. We do not recommend electrical checks of individual components because defective components will become evident during instrument operation. #### Recalibration After maintenance has been performed, the instrument should be checked as per the procedures in the *Calibration* chapter of this manual. ### Part Removal and Replacement #### **AC Fuse** The fuse is accessible through the rear panel of the case. 1. Unscrew the fuse cover and remove. Figure 7–1: Location of Voltage Selector and Fuse Holder on Rear Panel - **2.** Use a straight-blade screwdriver to remove the fuse holder. - **3.** Check the voltage selector for proper voltage setting. If the instrument voltage selector is set for 115 VAC, replace the fuse with a 0.3 A fuse (Tek P/N 159–0029–00). If the voltage selector is set for 230 VAC, replace the fuse with a 0.15 A fuse (Tek P/N 159–0054–00). - **4.** Replace the fuse holder. - **5.** Replace the access cover. # Removal of Case and EMI Shields - 1. Remove the instrument front cover. - 2. If installed, remove the chart recorder, or other device, from the option port. - **3.** Loosen the four screws on the back of the case and set the instrument face-up on a flat surface. - **4.** Swing the handle out of the way of the front panel. - **5.** Break the chassis seal by pushing downward with both hands on the handle pivots on each side of the case. - **6.** Grasp the case with one hand and tilt the chassis out with the other. Lift by grasping the outside perimeter of the front panel. - 7. Remove the screw in the middle of the bottom EMI shield. Remove the top and bottom shields from the chassis by carefully running a straight-blade screwdriver between the shield and the groove in the chassis rail. **CAUTION**. Do not lift the instrument by the front-panel controls. The controls will be damaged if you do so. # Removing the Power Supply Module - 1. From the Power Supply Board, remove the 14-conductor ribbon cable. This is a keyed connector, so polarity is guaranteed upon reinstallation (Figure 7–2, callout 5, next page). - 2. Remove the screw and washer located below the power switch on the instrument side panel (Figure 7–2, 7) - **3.** Remove the screw and washer holding the power supply module to the bottom chassis (Figure 7–2, 4). - **4.** Remove two screws holding the power supply module to the rear chassis panel. One is located near the AC power receptacle and the other is directly above the fuse holder (Figure 7–2, 6). - **5.** Remove the power supply module from the instrument by moving it toward the front of the instrument, guiding the power switch away from the mechanical linkage assembly. **NOTE**. The screws identified as 1 hold the circuit board to the module. They should not be removed until you are ready to remove this circuit board from the module (next procedure). Figure 7–2: Power Supply Module and P/O Rear Panel #### Removing the Power Supply Board - 1. Remove the power supply module per previous procedure. - **2.** Remove the two-conductor harmonica connector (Figure 7–2, 3, previous page). - **3.** Remove the four-conductor harmonica connector (Figure 7–2, 2). - **4.** Remove four screws holding the circuit board to the module (Figure 7–2, 1). - 5. Remove the Power Supply Board by carefully lifting up. Be sure the large capacitor on the bottom of the board clears the two nut blocks on the module side panels. If the board or the capacitor binds on either the nut blocks or the chassis side panel screw, remove the nut blocks. #### Removing the Power Transformer - 1. Remove the power supply module and circuit board per previous procedures. - 2. Remove the three screws holding the side panel on the power supply module - **3.** Remove the side panel. This will provide access to the transformer. - **4.** Unsolder the six wires attached to the power transformer. - **5.** Unsolder the varistor (R101) from lugs 4 and 5. - **6.** Remove the two screws and lock-washers holding the power transformer to the chassis. - 7. Lift out the transformer. **NOTE**. When reassembling, add a small amount of LocTite[®] to the two transformer mounting screws in step 6. # Removing the Power Cord Receptacle - **1.** Remove the power supply module, circuit board, and transformer per previous procedures. - **2.** Unsolder the three wires on the filter unit. - **3.** Remove the two screws and the spacer holding the receptacle. - **4.** Remove the filter unit from the rear of the module. # Removing the Fuse Holder and Voltage Selector - **1.** Remove the power supply module, circuit board, and transformer per previous procedures. - 2. Unsolder all four wires from the voltage selector switch. - **3.** Unsolder the two wires from the fuse holder. - **4.** Unscrew the hold-down nuts from both units. - 5. Remove both units from the rear of the module. # Power Cord Conductor Color Code | Conductor | Color | Alternate Color | |--------------------|--------------|-----------------| | Ungrounded (line) | Brown | Black | | Grounded (neutral) | Blue | White | | Grounded (earth) | Green/Yellow | Green | #### **Removing the Battery** - **1.** Unplug the battery cable at the battery and at the plug on the Power Supply board. - 2. Remove the two (2) screws securing the battery clamp to the chassis. - **3.** Remove the battery clamp, making sure not to short the terminals with the clamp. - **4.** Carefully lift the battery from the chassis. #### **Removing the Main Board** - **1.** From the top side of the instrument, remove the multi-colored cable (power supply) from the Main Board. - **2.** Turn the instrument upside down to expose the top of the Main Board. - **3.** Remove the three multi-colored cables from the component side of the Main
Board. This can be accomplished by inserting a small straight-blade screwdriver in the key and gently prying the connector from the board. Take care to guide the connectors straight off to avoid bending the pins. - **4.** Remove the eight screws and the center spacer post (with washer and locknut) that fasten the Main Board to the chassis. - **5.** Remove the Main Board, taking care to avoid binding on the power switch mechanical linkage. **NOTE**. One of the corner screws (see Figure 7–3, next page) holds a ground strap connector. Figure 7-3: Main Board ### **EPROM Replacement** **1.** Use an IC puller that is designed to extract multi-pin microcircuits to remove the EPROM from its socket. Figure 7-4: EPROM on Main Board **2.** When installing a new EPROM, make sure the notch in the IC is facing toward the front of the instrument and all pins are inserted correctly in the socket. # Lithium Battery Replacement Typically, the lithium battery for the non-volatile memory will last over seven years. If it requires replacement, use the following procedure. **CAUTION.** To avoid personal injury, observe proper procedures for handling and disposal of lithium batteries. Improper handling might cause fire, explosion, or severe burns. Do not recharge, crush, disassemble, heat the battery above 212° F (100° C), incinerate, or expose the contents of the battery to water. Dispose of the battery in accordance with local, state, and federal regulations. Typically, small quantities (less than 20 batteries) can be safely disposed of with ordinary garbage or in a sanitary landfill, but check local regulations before doing this. 1. Remove the Main Board as described in a previous procedure. Figure 7–5: Lithium Battery on Main Board - **2.** Unsolder the four leads of the lithium battery, being careful not to overheat the cell. - **3.** Remove the cell from the Main Board. - **4.** Install a new battery and solder the leads to the Main Board. **CAUTION.** Be sure that the new battery is one that is supplied or authorized by Tektronix. An improper replacement cell could cause irreversible damage to the Main Board circuitry. #### Removing the Pulser/Sampler Board **NOTE**. If the instrument is equipped with Option 06, Ethernet Adapter Board, follow the instructions under Option 06 in this chapter. There is an illustration in the Replaceable Mechanical Parts chapter showing the Option 06 and Pulser/Sampler Boards. - 1. Remove the two screws and washers holding the cover to the chassis. - **2.** Remove the cover by sliding it toward the center of the instrument. When re-assembling, make sure the cable is placed under the slot provided. - 3. Disconnect the multi-conductor cable from the circuit board. - **4.** Remove the coaxial cable from the circuit board. - **5.** Remove the circuit board from the instrument by sliding it out of the card guides. #### Option 06 (Ethernet®) Option 06 is a piggyback board mounted on the Pulser/Sampler Board. The following instructions describe the removal of the two boards as they are installed in the instrument. If you have purchased an Option 06 kit to be installed in an existing non-Option 06 1503C instrument, the instructions for installation are provided in that kit. There is an illustration in the *Replaceable Mechanical Parts* chapter showing the Option 06 and Pulser/Sampler Boards. - 1. Remove the two screws and washers holding the cover to the chassis. - **2.** Remove the cover by sliding it toward the center of the instrument. When re-assembling, make sure the cable is placed under the slot provided. - **3.** Disconnect the ground strap and SMC connector from the Pulser/Sampler Board. - **4.** Disconnect the ribbon cable from both boards. - **5.** Remove the circuit boards from the instrument by sliding them out of the card guides. - **6.** Unsolder the jumper wire between the Option 06 and the Pulser/Sampler Boards. - 7. Remove the standoff between the Option 06 and the Pulser/Sampler Boards. # Removing the Front Panel Assembly - 1. Using a hex wrench, disassemble the power switch linkage. This disconnects the front-panel switch shaft from the linkage block. - 2. Remove the three multi-conductor cables from the Main Board. - **3.** Remove the Pulser/Sampler Board EMI shield. - **4.** Remove the coaxial cable from the Pulser/Sampler Board. - **5.** Remove the four corner screws on the instrument front panel. - **6.** Carefully guide the coaxial cable through the Pulser/Sampler card cage. - 7. Remove the Front Panel Assembly from the instrument chassis. #### Removing the Display Module/Front Panel Board - **1.** Using the previous procedure, remove the Front Panel Assembly from the instrument. - 2. Remove all knobs. - **3.** Remove the hex nuts and washers from the front-panel controls. - **4.** Remove the buttons by pressing gently on the rubber boot behind each button. **CAUTION.** Take care not to use a sharp object to remove the buttons because it might puncture the rubber boot, thereby subjecting the instrument to moisture/water intrusion. Figure 7-6: Display Module/Front Panel Board Screw Locations **NOTE**. When re-assembling, push the rubber boot down on the switch shaft so that the switch button can easily be replaced. - **5.** Remove the four screws holding the Display Module/Front Panel Board to the front panel (see Figure 7–6, previous page). - **6.** Carefully lift the Display Module/Front Panel Board from the front panel. #### Removing the Front Panel Board from the Display Module - 1. Remove the four hex nuts (two are shown in Figure 7–7) that hold the Display Module to the Front Panel Board. - 2. Disconnect the ribbon cable from the boards. - **3.** Carefully separate the Display Module from the Front Panel Board. Figure 7–7: Display Module/Front Panel Board Showing Hex Nuts **CAUTION**. Do not further disassemble the Display Module. Elastomeric splices are used between the circuit boards and they require special alignment fixtures. Parts replacement requires special surface-mount technology. # Changing the Default to Metric The instrument will power up displaying DIST/DIV measurements as meters (m/div) or feet (ft/div). Although either measurement mode may be chosen from the *Setup Menu*, the default can easily be changed to cause the preferred mode to come up automatically at power up. - 1. Remove the instrument from the case. - 2. Remove the bottom EMI shield. Figure 7–8: Location of Default Jumper on Front Panel Board **3.** From the bottom side of the instrument, peer into the space between the Main Board and the Front Panel Board. The default jumper is located behind the screw that holds the Front Panel Assembly to the front-panel mounting stud. #### Top of Instrument **Bottom of Instrument** #### Figure 7–9: Default Jumper Positions **4.** Using a needle-nose plier, slip the jumper off the pins and move it to the desired default position (top for meters, bottom for feet). # Removing the Option Port Assembly - 1. Remove the Power Supply Module as shown in a previous procedure. - 2. Remove the Front Panel Assembly as previously described. - **3.** Remove the ribbon cable on the Main Board that connects the Main Board to the Option Port Assembly. - **4.** Remove the screw and washer from the instrument side panel. - **5.** Remove the nut from the bottom of the instrument. - **6.** The Option Port Assembly may be disassembled further by removing the four screws from the back of the assembly. This will allow easy access for replacement of the Option Port connector. ### **Troubleshooting** # Troubleshooting Flow Chart When encountering difficulties with the instrument, first use the troubleshooting chart in the *Operation* chapter. This might eliminate any minor problems such as fuse or power problems. The following troubleshooting flow charts (next three pages) are designed to give you an idea where to start. The *Circuit Descriptions* and *Schematics* chapters will give further assistance toward solving the problem. The Main Board waveforms represented on the flow chart are representative of an instrument in operation per the setup at the top of the flow chart. Additional Main Board waveforms are also included in this section. #### **Test Point Waveforms** The following Main Board waveforms are similar to the waveforms found on the troubleshooting flow chart. In some cases, however, the oscilloscope was set to show timing rather than the detail of the waveform. For example, TP7010 on the flow chart shows the detail of the pulse, but the same test point in the following figures shows the repetition rate. Set the 1503C front-panel controls: CABLE Attach 10-ft cable NOISE FILTER 1 avg (3rd position CW) VERT SCALE default DIST/DIV 1 ft/div (4th position CW) Vp .84 Vertical Position default Horizontal Position default Figure 7-10: Main Board TP1041 (waveforms continued on page 7–17) (waveforms continued next page) Figure 7-14: Main Board TP9041 **Front Panel CABLE Connector** #### When All Else Fails If it becomes necessary to ship the instrument to an authorized Tektronix Service Center, follow the packing instructions as described in *Repacking for Shipment* on page xvi. #### **Control Panel Installation** #### **Watertight Seals** To prevent moisture and dirt from getting into the 1503C, special seals are used around the LCD faceplate, options port, front panel, and front-panel button boot. Removing the front-panel button boot or other rubber seals will require special resealing procedures to retain the instrument weathertightness. A list of sealants is provided on the next page to aid in reinstallation. However, we recommend that resealing be done only by an authorized Tektronix Service Center. The front panel/cover seal should be inspected regularly and replaced every six to eight months, depending on the operating environment and use. All other seals should be inspected during normal adjustment/calibration periods, paying special attention to the front panel/case seal
and option port seal. **CAUTION.** If the case, option port, or a front panel control is removed, the weathertight integrity of the instrument will be compromised. #### **Sealing Materials** | Tek Part No. | Sealant | Comments | |--------------|-----------------------------------|---| | 006-2302-00 | Dow Corning 3145 Adhesive Sealant | Use to secure rubber boot around buttons, implosion shield to front panel | | 252-0199-00 | Dow Corning 3140 Coating | Use to secure case gaskets to chassis (more fluid sealant than 3145 with 24-hour cure time) | | 006–2207–00 | GE G-661 Silicon Grease | Light coating on case gaskets to prevent sticking and provide a good seal | | 006-0034-00 | Isopropyl alcohol | Cleaning agent | If a rubber boot or gasket is replaced: - **1.** Remove the old gasket. - **2.** Remove all dried adhesive. - 3. Clean area with alcohol and let dry. - **4.** Run a small bead of 3140 Coating/Adhesive in the cutout where the new gasket will go. - **5.** Smooth the adhesive into an even, thin layer. - **6.** Clean the new gasket with alcohol and let dry. - 7. Place the gasket on the adhesive and smooth into place. Make sure the edges are secure and there are no air bubbles under the gasket. - **8.** Let dry for 24 hours before using or reassembling the front panel. - **9.** Use silicon grease on the outer side of the front panel gasket and the battery gasket where they contact the instrument case. The instrument rotary controls, the fuse and line voltage select access covers are sealed with rubber O-rings. These are not glued in place, but should be inspected and replaced if necessary. ### **Installing the Case Cover Over the Chassis** - 1. Place the instrument chassis face down on a solid, non-slip surface so that the rear panel is facing upward. - **2.** Reach inside the case and use your fingers to push the four captive mounting screws out so that their heads stick up and out of the rear feet. - **3.** Align the case with the chassis. **4.** Gently lower the case over the chassis until the front of the case makes contact with the groove that surrounds the front panel casting. Figure 7–15: Installing the Case Cover Over the Chassis - **5.** Using a flat-blade screwdriver, secure the four mounting screws (seven inch-pounds of torque). Each screw should be started by turning it counterclockwise once, then clockwise. Alternately tighten each screw, gradually, a few turns at a time. - **6.** Check the gap between the case and the front panel casting to make sure that the case and front panel are mated evenly all around. If not mated properly, loosen the screws, reposition the case, then tighten the screws again. ## **Replaceable Electrical Parts** ### **Parts Ordering Information** Replacement parts are available from your Tektronix field office or representative. When ordering parts, include the part number plus instrument type, serial number, and modification number (if applicable). If a part is replaced with a new or improved part, your Tektronix representative will contact you regarding any change in part number. #### **List of Assemblies** A list of assemblies is found at the beginning of the replaceable electrical parts list. Assemblies are listed in numerical order. When the complete component number of a part is known, this list identifies the assembly in which the part is located. #### Mfr. Code Number-to-Manufacturer Cross Index The manufacturer code number-to-manufacturer cross index provides codes, names, and addresses of manufacturers of components listed in the replaceable electrical parts list. #### **Abbreviations** Abbreviations conform to ANSI standard Y1.1. #### **Component Number** (Column 1 of electrical parts list) A numbering method is used to identify assemblies, subassemblies, and parts. An example of this numbering method and typical expansions is as follows: Read: resistor 1234 of subassembly 2 of assembly 23. Only circuit numbers appear on the schematics and circuit board illustrations. Each schematic and illustration is marked with its assembly number. Assembly numbers are also marked on the mechanical exploded view located in the replaceable mechanical parts list. A component number is obtained by adding the assembly number prefix to the circuit number. This parts list is arranged by assemblies in numerical sequence (e.g., assembly A1 with its subassemblies and parts precedes A2 with its subassemblies and parts). Chassis-mounted parts have no assembly number prefix and are illustrated at the end of the replaceable mechanical parts list. #### **Tektronix Part No.** (Column 2) This column lists the part number used when ordering a replacement part from Tektronix. #### **Serial/Model No.** (Columns 3 and 4) Column 3 lists the serial number of the first instrument or the suffix number of the circuit board in which the part was used. Column 4 lists the serial number of the last instrument or the suffix number of the circuit board in which the part was used. No entry indicates that the part is used in all instruments. #### Name and Description (Column 5) In this parts list, the item name is separated from its description by a colon (:). Because of space limitations, the item name may appear to be incomplete. For further item name identification, refer to the U.S. Federal Cataloging Handbook, H6–1. #### Mfg. Code (Column 6) This column lists the code number of the manufacturer of the part. #### Mfg. Part Number (Column 7) This column lists the manufacturer's part number. #### **Manufacturers Cross Index** | Mfr.
Code | Manufacturer | Address | City, State, Zip Code | |--------------|-------------------------------------|------------------------------------|-----------------------------| | TV2440 | VIIVAV AMEDICA INC | 10F WEST MAIN ST SHITE 10 | AVON CT 0/001 | | TK2460 | VIKAY AMERICA INC | 195 WEST MAIN ST SUITE 19 | AVON CT 06001 | | 01002 | GENERAL ELECTRIC CO | 381 UPPER BROADWAY | FORT EDWARDS NY 12828–1021 | | 01121 | ALLEN-BRADLEY CO | 1201 S 2ND ST | MILWAUKEE WI 53204–2410 | | 01295 | TEXAS INSTRUMENTS INC | 13500 N CENTRAL EXPY PO BOX 655303 | DALLAS TX 75262–5303 | | 01686 | RCL ELECTRONICS/SHALLCROSS INC | 195 MCGREGOR ST | MANCHESTER NH 03102–3731 | |)2111 | SPECTROL ELECTRONICS CORP | 4051 GREYSTONE DRIVE | ONTARIO CA 91761 | | 04222 | AVX CERAMICS | 19TH AVE SOUTH PO BOX 867 | MYRTLE BEACH SC 29577 | |)4426 | ITW SWITCHES | 6615 W IRVING PARK RD | CHICAGO IL 60634-2410 | | 04713 | MOTOROLA INC | 5005 E MCDOWELL RD | PHOENIX AZ 85008-4229 | | 060D9 | UNITREK CORPORATION | 3000 COLUMBIA HOUSE BLDG SUITE 120 | VANCOUVER WA 98661 | | 07716 | IRC, INC | 2850 MT PLEASANT AVE | BURLINGTON IA 52601 | | 09353 | C AND K COMPONENTS INC | 15 RIVERDALE AVE | NEWTON MA 02158-1057 | | 09922 | FRAMATOME CONNECTORS USA INC | 51 RICHARDS AVE PO BOX 5200 | NORWALK CT 06856 | | OBOA9 | DALLAS SEMICONDUCTOR CORP | 4350 BELTWOOD PKWY SOUTH | DALLAS TX 75244 | |)GV52 | SCHAFFNER EMC INC | 9–B FADEM ROAD | SPRINGFIELD NJ 07081 | | OH1N5 | UNITED CHEMI-CON INC | 9801 W HIGGINS RD | ROSEMONT, IL 60018-4771 | |)JR03 | ZMAN MAGNETICS INC | 7633 S 180th | KENT WA 98032 | | JR04 | TOSHIBA AMERICA INC | 9775 TOLEDO WAY | IRVINE CA 92718 | | 10392 | GENERAL STAPLE CO INC | 59-12 37TH ST | WOODSIDE NY 11377-2523 | | 2697 | CLAROSTAT MFG CO INC | 12055 ROJAS DRIVE SUITE K | EL PASE TX 79936 | | 2954 | MICROSEMI CORP – SCOTTSDALE | 8700 E THOMAS RD PO BOX 1390 | SCOTTSDALE AZ 85252 | | 2969 | MICROSEMI CORP – WATERTOWN | 530 PLEASANT STREET | WATERTOWN MA 02172 | | 3409 | SENSITRON SEMICONDUCTOR | 221 W INDUSTRY COURT | DEER PARK NY 11729-4605 | | 14433 | ITT SEMICONDUCTORS DIV | 2540 N 1ST ST SUITE 203 | SAN JOSE CA 95131-1016 | | 14552 | MICROSEMI CORP | 2830 S FAIRVIEW ST | SANTA ANA CA 92704-5948 | | 14936 | GENERAL INSTRUMENT CORP | 600 W JOHN ST | HICKSVILLE NY 11802-0709 | | 16546 | PHILIPS COMPONENTS | 4561 COLORADO BLVD | LOS ANGELES CA 90039-1103 | | 17856 | TEMIC NORTH AMERICA SILICONIX | 2201 LAURELWOOD RD | SANTA CLARA CA 95054-1516 | | 18324 | PHILIPS SEMICONDUCTORS | 830 STEWARD RD | SUNNYVALE CA 94088 | | 18796 | MURATA ERIE NORTH AMERICAN INC | 1900 W COLLEGE AVE | STATE COLLEGE PA 16801-2723 | | 9701 | PHILIPS COMPONENTS DISCRETE PRODUCT | AIRPORT RD PO BOX 760 | MINERAL WELLS TX 76067-0760 | | 21845 | SOLITRON DEVICES INC | 3301 ELECTRONICS WAY | WEST PALM BEACH FL 33407 | | 21847 | FEI MICROWAVE INC | 825 STEWART DR | SUNNYVALE CA 94086-4514 | | 22526 | BERG ELECTRONICS | 825 OLD TRAIL RD | ETTERS PA 17319 | | 24165 | SPRAGUE ELECTRIC CO | 267 LOWELL ROAD | HUDSON NH 03051 | | 24355 | ANALOG DEVICES INC | 1 TECHNOLOGY DR | NORWOOD MA 02062 | ### **Manufacturers Cross Index (Cont.)** | Mfr. | Address | City State 7in Code | | |-------|-----------------------------|---------------------------------------|----------------------------| | Code | Manufacturer | Address | City, State, Zip Code | | 27014 | NATIONAL SEMICONDUCTOR CORP | 2900 SEMICONDUCTOR DR | SANTA CLARA CA 95051-0606 | | 31433 | KEMET ELECTRONICS CORP | PO BOX 5928 | GREENVILLE SC 29606 | | 32997 | BOURNS INC TRIMPOT DIV | 1200 COLUMBIA AVE | RIVERSIDE CA 92507-2114 | | 34333 | LINFINITY MICROELECTRONICS | 11861 WESTERN AVE | GARDEN GROVE CA 92641 | | 34371 | HARRIS CORP | PO BOX 883 | MELBOURNE FL 32902-0883 | | 34649 | INTEL CORP | 3065 BOWERS AVE PO BOX 58130 | SANTA CLARA CA 95051 | | 50434 | HEWLETT-PACKARD CO | 370 W TRIMBLE RD | SAN JOSE CA 95131-1008 | | 53387 | 3M COMPANY | 3M AUSTIN CENTER | AUSTIN TX 78769-2963 | | 54937 | DEYOUNG MANUFACTURING INC | 12920 NE 125TH WAY | KIRKLAND WA 98034-7716 | | 55680 | NICHICON /AMERICA/ CORP | 927 E STATE PKY | SCHAUMBURG IL 60195-4526 | | 56637 | RCD COMPONENTS INC | 520 E INDUSTRIAL PARK DR | MANCHESTER NH 03103 | | 56845 | DALE ELECTRONICS INC | 2300 RIVERSIDE BLVD PO BOX 74 | NORFOLK NE 68701-2242 | | 56866 | QUALITY THERMISTOR INC | 2096 SOUTH COLE RD SUITE 7 | BOISE ID
83705 | | 7668 | ROHM CORP | 15375 BARRANCA PARKWAY SUITE B207 | IRVINE CA 92718 | | 58050 | TEKA PRODUCTS INC | 45 SALEM ST | PROVIDENCE RI 02907 | | 61935 | SCHURTER INC | 1016 CLEGG COURT | PETALUMA CA 94952-1152 | | 62643 | UNITED CHEMICON INC | 9801 W HIGGINS RD | ROSEMONT IL 60018-4771 | | 63312 | ENDICOTT RESEARCH GROUP INC | 2601 WAYNE ST PO BOX 269 | ENDICOTT NY 13760-3272 | | 64537 | KDI/TRIANGLE ELECTRONICS | 60 S JEFFERSON RD | WHIPPANY NJ 07981 | | 71400 | BUSSMAN | 114 OLD STATE RD PO BOX 14460 | ST LOUIS MO 63178 | | 71590 | CGE SWITCHES – USA | PO BOX 1587 | FORT DODGE IA 50501 | | 75042 | IRC ELECTRONIC COMPONENTS | 401 N BROAD ST | PHILADELPHIA PA 19108-1001 | | 75378 | CTS KNIGHTS INC | 400 REIMANN AVE | SANDWICH IL 60548-1846 | | 75915 | LITTLEFUSE TRACOR INC | 800 E NORTHWEST HWY | DES PLAINES, IL 60016-3049 | | 30009 | TEKTRONIX INC | 14150 SW KARL BRAUN DR PO BOX 500 | BEAVERTON OR 97077-0001 | | 81073 | GRAYHILL INC | 561 HILLGROVE AVE PO BOX 10373 | LA GRANGE IL 60525-5914 | | 81855 | EAGLE-PICHER INDUSTRIES INC | COUPLES DEPT C – PORTER STS PO BOX 47 | JOPLIN MO 64801 | | 91637 | DALE ELECTRONICS INC | 2064 12TH AVE PO BOX 609 | COLUMBUS NE 68601-3632 | | | | | | # Replaceable Parts List | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd (| Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|---------------------------|-----|---|--------------|------------------| | | | | | | CIRCUIT BOARD ASSEMBLIES | | | | \1 | 672–1388–00 | | | | CKT BD ASSY:MAIN W/EPROM | 80009 | 672–1388–00 | | A1 | 672–1390–00 | | | | CKT BD ASSY:MAIN W/EPROM
(ETHERNET OPTION 06 ONLY) | 80009 | 672–1390–00 | | A1A1 | 670-9285-04 | B020000 | B023542 | | CKT BD ASSY:MAIN W/O EPROM | 80009 | 670-9285-04 | | | 670-9285-05 | B023543 | | | CKT BD ASSY:MAIN W/O EPROM | 80009 | 670–9285–05 | | \ 2 | 672–1389–00 | | | | CKT BD ASSY:FRONT PANEL | 80009 | 672–1389–00 | | \3A1 | 670-9286-04 | B020000 | B023542 | | CKT BD ASSY:POWER SUPPLY | 80009 | 670-9286-04 | | | 670-9286-05 | B023543 | | | CKT BD ASSY:POWER SUPPLY | 80009 | 670-9286-05 | | A 4 | 6709290-03 | B020000 | B023542 | | CKT BD ASSY:L/R PULSER SAMPLER | 80009 | 670–9290–03 | | | 6709290-04 | B023543 | B024251 | | CKT BD ASSY:L/R PULSER SAMPLER | 80009 | 670-9290-04 | | | 6709290-05 | B024252 | B024700 | | CKT BD ASSY:L/R PULSER SAMPLER | 80009 | 670-9290-05 | | | 6709290-06 | B024701 | B025257 | | CKT BD ASSY:L/R PULSER SAMPLER | 80009 | 670-9290-06 | | | 6709290-07 | B025258 | B025371 | | CKT BD ASSY:L/R PULSER SAMPLER | 80009 | 670-9290-07 | | | 6709290-08 | B025372 | | | CKT BD ASSY:L/R PULSER SAMPLER | 80009 | 670–9290–08 | | A 5 | 672–1241–00 | B020000 | B023853 | | CKT BD ASSY:DISPLAY MODULE | 80009 | 672–1241–00 | | | 118–9050–01 | B023854 | | | CKT BD ASSY:DISPLAY MODULE | 80009 | 118–9050–01 | | 46 | 671-0443-00 | B010100 | B023647 | | CKT BD ASSY:ETHERNET | 80009 | 671-0443-00 | | | 671-0443-01 | B023648 | | | CKT BD ASSY:ETHERNET | 80009 | 671-0443-01 | | | | | | | WIRE ASSEMBLIES | | | 8-5 | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|------------------| | A1 | 672-1388-XX | | | | CKT BD ASSY:MAIN BOARD W/EPROM & BATTERY (STANDARD INSTRUMENT) | | | | A1U2020 | 160-9008-00 | | | | IC,DGTL:EPROM,PRGM | 80009 | 160-9008-00 | | A1BT1010 | 146-0049-00 | | | | BATTERY,STORAGE:3.5V,750MAH SFTY CONT | 81855 | LTC-7P | | A 1 | 672-1390-XX | | | | CKT BD ASSY:MAIN BOARD E/EPROM & BATTERY (ETHERNET OPTION 06 ONLY) | | | | A1U2020 | 160-4411-06 | | | | IC,DGTL:EPROM,PRGM | 80009 | 160-4411-06 | | A1BT1010 | 146-0049-00 | | | | BATTERY,STORAGE:3.5V,750MAH SFTY CONT | 81855 | LTC-7P | | A1A1 | 670-9285-XX | | | | CKT BD ASSY:MAIN | | | | A1A1C1010 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C1011 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C1020 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C1021 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C1022 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C1023 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C1024 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C1030 | 283-0190-00 | | | | CAP,FXD,CER DI:0.47UF,5%,50V SQ | 04222 | SR305C474JAA | | A1A1C1031 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C1032 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C1040 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C1041 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C1042 | 290-1087-00 | | | | CAP,FXD,ELCTLT:100UF,25V,AXIAL | 1W344 | KMC25T101M8X11L | | A1A1C1043 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2010 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2011 | 290-0748-00 | | | | CAP,FXD,ELCTLT:10UF,+50-20%,25W VDC | 0J9R5 | CEUST1E100 | | A1A1C2012 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2013 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2014 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2015 | 283-0111-04 | | | | CAP,FXD,CER DI:0.1UF,20%,50V SQ | 04222 | SR595C104MAAAP1 | | A1A1C2016 | 283-0238-00 | | | | CAP,FXD,CER DI:0.01UF,10%,50V SQ | 04222 | SR155C103KAA | | A1A1C2020 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | | | | | | | | | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|---------------------------------------|--------------|-----------------------| | A1A1C2021 | 281-0925-01 | | | ; | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2030 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2031 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2032 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2033 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2034 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2035 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2036 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2037 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2038 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2039 | 283-0067-00 | | | | CAP,FXD,CER DI:0.001UF,10%,200V | 18796 | DD09B10 Y5F 102K 200\ | | A1A1C2040 | 283-0059-02 | | | | CAP,FXD,CER DI:1UF,20%,50V | 04222 | SR305C105MAATRSTDI | | A1A1C2041 | 283-0059-02 | | | | CAP,FXD,CER DI:1UF,20%,50V | 04222 | SR305C105MAATRSTDI | | A1A1C2042 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2043 | 283-0238-00 | | | | CAP,FXD,CER DI:0.01UF,10%,50V SQ | 04222 | SR155C103KAA | | A1A1C2044 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C2045 | 281-0272-00 | | | | CAP,FXD,CER DI:0.1UF,10%,50V DIP | 04222 | SA115C104KAA | | A1A1C2046 | 283-0067-00 | | | | CAP,FXD,CER DI:0.001UF,10%,200V | 18796 | DD09B10 Y5F 102K 200 | | A1A1C3020 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C3021 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C3022 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C3023 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C3030 | 283-0181-00 | | | | CAP,FXD,CER DI:1.8PF,+/-0.1%,100V SQ | 24165 | 5024E0200RD221K | | A1A1C3040 | 283-0107-00 | | | | CAP,FXD,CER DI:51PF,5%,200V SQ | 04222 | SR202A510JAA | | A1A1C3041 | 283-0167-00 | | | | CAP,FXD,CER DI:0.1UF,10%,100V SQ | 04222 | SR211C104KAA | | A1A1C3042 | 283-0108-02 | | | | CAP,FXD,CER DI:220PF,10%,200V SQ | 04222 | SR075A221KAAAP1 | | A1A1C3043 | 283-0330-00 | | | | CAP,FXD,CER DI:100PF,5%,50V SQ | 16546 | CN15C101J | | A1A1C3044 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C3045 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C3046 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C3047 | 283-0181-00 | | | | CAP,FXD,CER DI:1.8PF,+/-0.1%,100V SQ | 24165 | 5024E0200RD221K | | A1A1C3048 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C4020 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C4021 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C4022 | 285–1241–00 | | | |
CAP,FXD,PLASTIC:0.22UF,10%,100V | 12954 | B32571.22/10/100 | | A1A1C4030 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C4040 | 281–0813–00 | | | | CAP,FXD,CER DI:MLC,0.04UF,20%,50V | 04222 | SA105E473MAA | | | _0. 0010 00 | | | | , | J 1444 | | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|--------------------| | A1A1C5010 | 283-0330-00 | | | | CAP,FXD,CER DI:100PF,5%,50V SQ | 16546 | CN15C101J | | A1A1C5020 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C5021 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C5022 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C5023 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C5024 | 283-0177-00 | | | | CAP,FXD,CER DI:1UF,+80-20%,25V | 04222 | SR305E105ZAA | | A1A1C5025 | 283-0177-00 | | | | CAP,FXD,CER DI:1UF,+80-20%,25V | 04222 | SR305E105ZAA | | A1A1C5030 | 281-0813-00 | | | | CAP,FXD,CER DI:MLC,0.04UF,20%,50V | 04222 | SA105E473MAA | | A1A1C5031 | 281-0813-00 | | | | CAP,FXD,CER DI:MLC,0.04UF,20%,50V | 04222 | SA105E473MAA | | A1A1C5032 | 281-0798-00 | | | | CAP,FXD,CER DI:51PF,1%,100V TUBULAR,MI | 04222 | SA101A510GAA | | A1A1C5033 | 283-0330-00 | | | | CAP,FXD,CER DI:100PF,5%,50V SQ | 16546 | CN15C101J | | A1A1C5040 | 283-0330-00 | | | | CAP,FXD,CER DI:100PF,5%,50V SQ | 16546 | CN15C101J | | A1A1C5041 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C5042 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C6030 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C6031 | 283-0177-00 | | | | CAP,FXD,CER DI:1UF,+80-20%,25V | 04222 | SR305E105ZAA | | A1A1C6032 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C7010 | 283-0111-04 | | | | CAP,FXD,CER DI:0.1UF,20%,50V SQ | 04222 | SR595C104MAAAP1 | | A1A1C7020 | 281-0813-00 | | | | CAP,FXD,CER DI:MLC,0.04UF,20%,50V | 04222 | SA105E473MAA | | A1A1C7021 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C7022 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C7023 | 283-0177-00 | | | | CAP,FXD,CER DI:1UF,+80-20%,25V | 04222 | SR305E105ZAA | | A1A1C7030 | 283-0059-02 | | | | CAP,FXD,CER DI:1UF,20%,50V | 04222 | SR305C105MAATRSTDI | | A1A1C7040 | 283-0330-00 | | | | CAP,FXD,CER DI:100PF,5%,50V SQ | 16546 | CN15C101J | | A1A1C7041 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C7042 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C7043 | 290-0748-00 | | | | CAP,FXD,ELCTLT:10UF,+50-20%,25W VDC | 0J9R5 | CEUST1E100 | | A1A1C8010 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C8020 | 283-0010-00 | | | | CAP,FXD,CER DI:0.05UF,+80-20%,50V SQ | 04222 | SR305E503ZAA | | A1A1C8021 | 281-0798-00 | | | | CAP,FXD,CER DI:51PF,1%,100V TUBULAR,MI | 04222 | SA101A510GAA | | A1A1C8022 | 283-0330-00 | | | | CAP,FXD,CER DI:100PF,5%,50V SQ | 16546 | CN15C101J | | A1A1C8023 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C8024 | 283-0348-00 | | | | CAP,FXD,CER DI:0.5PF,+/-0.1PF,100V | 31433 | C312C109D1G5EA | | A1A1C8040 | 283-0156-00 | | | | CAP,FXD,CER DI:1000PF,+80-20%,200V SQ | 04222 | SR152E102ZAA | | A1A1C9010 | 283-0111-04 | | | | CAP,FXD,CER DI:0.1UF,20%,50V SQ | 04222 | SR595C104MAAAP1 | | A1A1C9011 | 281-0813-00 | | | | CAP,FXD,CER DI:MLC,0.04UF,20%,50V | 04222 | SA105E473MAA | | A1A1C9020 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C9021 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|------------------| | A1A1C9022 | 281-0813-00 | | | | CAP,FXD,CER DI:MLC,0.04UF,20%,50V | 04222 | SA105E473MAA | | A1A1C9023 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C9024 | 281-0813-00 | | | | CAP,FXD,CER DI:MLC,0.04UF,20%,50V | 04222 | SA105E473MAA | | A1A1C9025 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C9030 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C9031 | 290-0748-00 | | | | CAP,FXD,ELCTLT:10UF,+50-20%,25W VDC | 0J9R5 | CEUST1E100 | | A1A1C9032 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C9033 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A1A1C9034 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,Z5U | 31433 | C114C224M5Y5CA | | A1A1C9035 | 290-0748-00 | | | | CAP,FXD,ELCTLT:10UF,+50-20%,25W VDC | 0J9R5 | CEUST1E100 | | A1A1CR1020 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A1A1CR1021 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A1A1CR1022 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A1A1CR1023 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A1A1CR3031 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A1A1CR4030 | 152-0141-02 | | | | DIODE,SIG:ULTRA FAST;40V,150MA,4NS,2PF | 01295 | 1N4152R | | A1A1CR4031 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A1A1CR4032 | 152-0725-00 | | | | DIODE DVC,DI:SI,SCHOTTKY,20V,1.2PF | 21847 | A2X1582 | | A1A1CR5030 | 152-0725-00 | | | | DIODE DVC,DI:SI,SCHOTTKY,20V,1.2PF | 21847 | A2X1582 | | A1A1CR5040 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A1A1CR8020 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A1A1CR9010 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A1A1J2010 | 131–3361–00 | | | | CONN,HDR:PCB,MALE,RTANG,2 X 13,0.1 CTR | 53387 | 3593–5002 | | A1A1J5040 | 131-4183-00 | | | | CONN,HDR:PCB,MALE,STR,2 X 7,0.1 CTR | 53387 | 3598-6002 | | A1A1J9010 | 131–3359–00 | | | | CONN,HDR:PCB,MALE,RTANG,2 X 10,0.1 CTR | 53387 | 3592–5002 | | A1A1L5030 | 120–1606–00 | | | | XFMR,RF:INDUCTOR 86–10 | 0JR03 | 120-1606-00 | | A1A1L5040 | 108-0509-01 | | | | COIL,RF:FIXED,2.45UH +/-10%,AXIAL LEAD | 0JR03 | 108-0509-01 | | A1A1Q1010 | 151–1176–00 | | | | XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM | 04713 | IRFD9120 | | A1A1Q1020 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A1A1Q1021 | 151-0188-00 | | | | XSTR,SIG:BIPOLAR,PNP;40V,200MA,250MHZ,AMP | 03508 | X39H3162 | | A1A1Q1030 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A1A1Q1031 | 151-0188-00 | | | | XSTR,SIG:BIPOLAR,PNP;40V,200MA,250MHZ,AMP | 03508 | X39H3162 | | A1A1Q2011 | 151-1176-00 | | | | XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM | 04713 | IRFD9120 | | A1A1Q2012 | 151-1176-00 | | | | XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM | 04713 | IRFD9120 | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|------------------| | A1A1Q3030 | 151-0276-01 | | | | XSTR,SIG:BIPOLAR,PNP;50V,50MA,40MHZ,AMP | 04713 | 2N5087RLRP | | A1A1Q4030 | 151-1078-00 | | | | XSTR,SIG:JFET,N-CH;3.5V,75MA,90 OHM;TO-92 | 04713 | SPF3040 | | A1A1Q4031 | 151-0441-00 | B020000 | B026005 | | XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP | 04713 | 2N3839 | | | 151-0711-00 | B026006 | | | XSTR,SIG:BIPOLAR,NPN,25V,50MA,650MHZ,TO-92 | 04713 | MPSH10 | | A1A1Q4040 | 151-0271-00 | | | | XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP | 01295 | SKA4504 | | A1A1Q5020 | 151-0308-00 | | | | XSTR,SIG:BIPOLAR,NPN;45V,30MA,60MHZ,AMP | 04713 | 2N2918 | | A1A1Q5030 | 151-0441-00 | B020000 | B026005 | | XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP | 04713 | 2N3839 | | | 151-0711-00 | B026006 | | | XSTR,SIG:BIPOLAR,NPN,25V,50MA,650MHZ,TO-92 | 04713 | MPSH10 | | A1A1Q5031 | 151-1012-00 | | | | XSTR,SIG:JFET,N-CH,6V,15MA,4.5MS,AMP | 21845 | F1585 | | A1A1Q5032 | 151-0261-00 | | | | XSTR,SIG:BIPOLAR,PNP;60V,50MA,100MHZ,AMP | 04713 | 2N3810 | | A1A1Q6020 | 151-0271-00 | | | | XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP | 01295 | SKA4504 | | A1A1Q7020 | 151-0441-00 | B020000 | B026005 | | XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP | 04713 | 2N3839 | | | 151-0711-00 | B026006 | | | XSTR,SIG:BIPOLAR,NPN,25V,50MA,650MHZ,TO-92 | 04713 | MPSH10 | | A1A1Q7021 | 151-0139-00 | | | | XSTR,SIG:BIPOLAR,NPN;15V,50MA,600MHZ,AMP | 04713 | MD918 | | A1A1Q7030 | 151-0441-00 | B020000 | B026005 | | XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP | 04713 | 2N3839 | | | 151-0711-00 | B026006 | | | XSTR,SIG:BIPOLAR,NPN,25V,50MA,650MHZ,TO-92 | 04713 | MPSH10 | | A1A1Q8020 | 151-0139-00 | | | | XSTR,SIG:BIPOLAR,NPN;15V,50MA,600MHZ,AMP | 04713 | MD918 | | A1A1Q9010 | 151-0271-00 | | | | XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP | 01295 | SKA4504 | | A1A1Q9020 | 151-0308-00 | | | | XSTR,SIG:BIPOLAR,NPN;45V,30MA,60MHZ,AMP | 04713 | 2N2918 | | A1A1Q9021 | 151-0271-00 | | | | XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP | 01295 | SKA4504 | |
A1A1R1010 | 322–3162–00 | | | | RES,FXD:METAL FILM:475 OHM,1%,0.2W | 57668 | CRB20 FXE 475E | | A1A1R1011 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A1A1R1012 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A1A1R1013 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A1A1R1014 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A1A1R1015 | 322-3318-00 | | | | RES,FXD:METAL FILM:20.0K OHM,1%,0.2W | 57668 | CRB20 FXE 20K0 | | A1A1R1016 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | A1A1R1020 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A1A1R1021 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A1A1R1022 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A1A1R1023 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A1A1R1032 | 322-3437-00 | | | | RES,FXD,FILM:348K OHM,1%,0.2W | 57668 | CRB20 FXE 348K | | A1A1R1033 | 307-0446-00 | | | | RES NTWK,FXD,FI:10K OHM,20%,(9)RES | 01121 | 210A103 | | A1A1R1035 | 321-0756-00 | | | | RES,FXD,FILM:50K OHM,1%,0.125W | 01121 | ADVISE | | A1A1R2010 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | A1A1R2011 | 322-3318-00 | | | | RES,FXD:METAL FILM:20.0K OHM,1%,0.2W | 57668 | CRB20 FXE 20K0 | | | | | | | | | | | TAIR2014 307-0446-00 RES.NTW.K.FXD.F:LIDK.OHM.20%.(9)RES 01121 210A103 1AIR2015 307-0446-00 RES.NTW.K.FXD.F:LIDK.OHM.20%.(9)RES 01121 210A103 1AIR2030 322-3239-00 RES.FXD.FILM3.01K.OHM.1%.0.2W 57668 CR820 FXE 3K0 1AIR2033 322-3239-00 RES.FXD.FILM3.01K.OHM.1%.0.2W 57668 CR820 FXE 3K0 1AIR2034 311-0634-00 RES.FXD.FILM3.01K.OHM.1%.0.2W 57668 CR820 FXE 1K 1AIR2034 311-0634-00 RES.FXD.FILM3.01K.OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR2034 322-3139-00 RES.FXD.FILM3.14.FILM214 OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR2041 322-3134-00 RES.FXD.FILM3.43 OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR2041 322-3134-00 RES.FXD.FILM3.43 OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR2043 322-3134-00 RES.FXD.FILM3.43 OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR2043 322-3134-00 RES.FXD.FILM3.43 OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR2043 322-3097-00 RES.FXD.FILM3.20 OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR3020 322-3097-00 RES.FXD.FILM3.00 OHM.1%.0.2W 57668 CR820 FXE 1K1 1AIR3020 322-3097-00 RES.FXD.FILM3.00 OHM.1%.0.2W 57668 CR820 FXE 1K1 1AIR3023 322-3356-00 RES.FXD.FILM3.00 OHM.1%.0.2W 57668 CR820 FXE 1K1 1AIR3033 322-3356-00 RES.FXD.FILM3.00 OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR3033 322-3324-00 RES.FXD.FILM3.10 OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR3033 322-3326-00 RES.FXD.FILM3.10 OHM.1%.0.2W 57668 CR820 FXE 2K1 1AIR3035 322-3326-00 RES.FXD.FILM3.10 OHM.1%.0.2W 57668 CR820 FXE 1K1 1AIR3036 322-3326-00 RES.FXD.FILM3.10 OHM.1%.0.2W 57668 CR820 FXE 1K1 1AIR3036 322-3326-00 RES.FXD.FILM3.10 OHM.1%.0.2W 57668 CR820 FXE 1K1 1AIR3036 322-3326-00 RES.FX | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |--|----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|------------------| | TAIR2015 307-0446-00 RES.NTW., FXD, F1:10K OHM, 20%, (9)RES 01121 210A103 1AIR2030 322-3239-00 RES.FXD, FILM3.01K OHM, 1%, 0.2W 57668 CRB20 FXE 3K0 1AIR2031 322-3239-00 RES.FXD, FILM3.01K OHM, 1%, 0.2W 57668 CRB20 FXE 1K1 AIR2033 322-3239-00 RES.FXD, FILM3.01K OHM, 1%, 0.2W 57668 CRB20 FXE 1K1 AIR2034 311-0634-00 RES.FXD, FILM24 FILM-11.0K OHM, 1%, 0.2W 57668 CRB20 FXE 1K1 AIR2040 322-3139-00 RES.FXD, FILM243 OHM, 1%, 0.2W 57668 CRB20 FXE 274 AIR2041 322-3134-00 RES.FXD, FILM243 OHM, 1%, 0.2W 57668 CRB20 FXE 274 AIR2042 322-3134-00 RES.FXD, FILM243 OHM, 1%, 0.2W 57668 CRB20 FXE 248 AIR2043 322-3126-00 RES.FXD, FILM243 OHM, 1%, 0.2W 57668 CRB20 FXE 248 AIR2043 322-329-00 RES.FXD, FILM243 OHM, 1%, 0.2W 57668 CRB20 FXE 148 AIR2043 322-329-00 RES.FXD, FILM243 OHM, 1%, 0.2W 57668 CRB20 FXE 148 AIR2043 322-329-00 RES.FXD, FILM243 OHM, 1%, 0.2W 57668 CRB20 FXE 148 AIR2043 322-3356-00 RES.FXD, FILM2449 KN OHM, 1%, 0.2W 57668 CRB20 FXE 148 AIR2033 322-3356-00 RES.FXD, FILM2449 KN OHM, 1%, 0.2W 57668 CRB20 FXE 148 AIR2033 322-3356-00 RES.FXD, FILM2449 KN OHM, 1%, 0.2W 57668 CRB20 FXE 148 AIR2033 322-3356-00 RES.FXD, FILM2449 KN OHM, 1%, 0.2W 57668 CRB20 FXE 154 AIR2033 322-3356-00 RES.FXD, FILM2449 KN OHM, 1%, 0.2W 57668 CRB20 FXE 154 AIR2033 322-3356-00 RES.FXD, FILM24 FILM215 (AIR204) 57668 CRB20 FXE 154 AIR2033 322-3356-00 RES.FXD, FILM24 FILM215 (AIR204) 57668 CRB20 FXE 154 AIR2033 322-3356-00 RES.FXD, FILM24 FILM215 (AIR204) 57668 CRB20 FXE 154 AIR2033 322-3356-00 RES.FXD, FILM24 FILM215 (AIR204) 57668 CRB20 FXE 154 AIR2033 322-3356-00 RES.FXD, FILM24 FILM215 (AIR204) 57668 CRB20 FXE 154 AIR2033 322-3356-00 RES.FXD, FILM24 FILM215 (AIR204) 57668 CRB20 FXE 154 AIR2033 322-3356-00 RES.FXD, FILM24 FILM315 (AIR204) 57668 CRB20 FXE 154 AIR2033 322-3356-00 RES.FXD, FILM24 FILM315 | A1A1R2013 | 322-3385-00 | | | ; | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | 1A1R2030 322-3239-00 RES.FXD.FILM3.01K OHM,1%,0.2W 57668 CRB20 FXE 3K0 1A1R2031 322-3299-00 RES.FXD.FILM3.01K OHM,1%,0.2W 57668 CRB20 FXE 3K0 1A1R2033 322-3299-00 RES.FXD.FILM3.01K OHM,1%,0.2W 57668 CRB20 FXE 1K1 1A1R2034 311-0634-00 RES.FXD.FILM2.1 CHILM1.1 KO. OHM,1%,0.2W 57668 CRB20 FXE 1K1 1A1R2040 322-3139-00 RES.FXD.FILM2.243 OHM,1%,0.2W 57668 CRB20 FXE 274 1A1R2041 322-3134-00 RES.FXD.FILM2.243 OHM,1%,0.2W 57668 CRB20 FXE 274 1A1R2041 322-3134-00 RES.FXD.FILM2.243 OHM,1%,0.2W 57668 CRB20 FXE 274 1A1R2041 322-3134-00 RES.FXD.FILM2.243 OHM,1%,0.2W 57668 CRB20 FXE 243 1A1R2043 322-3126-00 RES.FXD.FILM2.20 OHM,1%,0.2W 57668 CRB20 FXE 243 1A1R2043 322-32997-00 RES.FXD.FILM2.20 OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R3030 322-33997-00 RES.FXD.FILM2.20 OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R3030 322-33997-00 RES.FXD.FILM2.20 OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R3030 322-3397-00 RES.FXD.FILM2.20 FXD.FILM2.20 OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R3031 322-3356-00 RES.FXD.FILM2.20 FXD.FILM2.20 FXD.FXD.FXD.FXD.FXD.FXD.FXD.FXD.FXD.FXD. | A1A1R2014 | 307-0446-00 | | | | RES NTWK,FXD,FI:10K OHM,20%,(9)RES | 01121 | 210A103 | | 1A1R2031 322-329-00 RES.FXD.FILM.3.01K OHM.1%,0.2W 57668 CRB20 FXE 3K0 1A1R2033 322-3293-00 RES.FXD.METAL.FILM.11.0K OHM.1%,0.2W 57668 CRB20 FXE 11K 1A1R2040 322-3139-00 RES.FXD.METAL.FILM.274 OHM.1%,0.2W 57668 CRB20 FXE 21K 1A1R2041 322-3134-00 RES.FXD.FILM.243 OHM.1%,0.2W 57668 CRB20 FXE 24K 1A1R2041 322-3134-00 RES.FXD.FILM.243 OHM.1%,0.2W 57668 CRB20 FXE 24K 1A1R2041 322-3134-00 RES.FXD.FILM.243 OHM.1%,0.2W 57668 CRB20 FXE 24K 1A1R2043 322-3126-00 RES.FXD.FILM.240 OHM.1%,0.2W 57668 CRB20 FXE 24K 1A1R2043 322-3097-00 RES.FXD.FILM.200 OHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3030 322-3097-00 RES.FXD.METAL.FILM.110.1 OHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3030 322-3097-00 RES.FXD.METAL.FILM.110.0 OHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3031 322-3356-00 RES.FXD.METAL.FILM.110.0 OHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3031 322-3356-00 RES.FXD.FILM.249 KOHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3031 322-3356-00 RES.FXD.FILM.249 KOHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3033 322-332-00 RES.FXD.FILM.249 KOHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3033 322-3361-00 RES.FXD.FILM.249 KOHM.1%,0.2W 57668 CRB20 FXE 54K 1A1R3033 322-3361-00 RES.FXD.FILM.511K OHM.1%,0.2W 57668 CRB20 FXE 54K 1A1R3033 322-3361-00 RES.FXD.FILM.511K OHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3034 322-3261-00 RES.FXD.FILM.511K OHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3037 322-3314-00 RES.FXD.METAL.FILM.10.10 KOHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3037 322-3329-00 RES.FXD.METAL.FILM.15.00 KOHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3034 322-3338-00 RES.FXD.METAL.FILM.15.00 KOHM.1%,0.2W
57668 CRB20 FXE 10K 1A1R3041 322-3338-00 RES.FXD.METAL.FILM.15.00 KOHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3041 322-3338-00 RES.FXD.METAL.FILM.15.00 KOHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R3042 322-3347-00 RES.FXD.METAL.FILM.15.00 KOHM.1%,0.2W 57668 CRB20 FXE 10K 1A1R303 322-3328-00 RES.FXD.ME | A1A1R2015 | 307-0446-00 | | | | RES NTWK,FXD,FI:10K OHM,20%,(9)RES | 01121 | 210A103 | | 1A1R2033 322-3293-00 RES,FXD.METAL FILM:11.0K OHM.1%,0.2W 57668 CR820 FXE 11K 1A1R2034 311-0634-00 RES,VAR.NONWY.TRMR.500 OHM.0.5W CERMET 32997 3329H-L58-501 A1R2040 322-3134-00 RES,FXD.METAL FILM:274 OHM.1%,0.2W 57668 CR820 FXE 274 1A1R2041 322-3134-00 RES,FXD.FILM:243 OHM.1%,0.2W 57668 CR820 FXE 274 1A1R2041 322-3134-00 RES,FXD.FILM:243 OHM.1%,0.2W 57668 CR820 FXE 234 1A1R2041 322-3134-00 RES,FXD.FILM:243 OHM.1%,0.2W 57668 CR820 FXE 234 1A1R2043 322-3097-00 RES,FXD.METAL FILM:121 K OHM.1%,0.2W 57668 CR820 FXE 100 A1R3030 322-3097-00 RES,FXD.METAL FILM:121 K OHM.1%,0.2W 57668 CR820 FXE 100 RES,FXD.METAL FILM:3033 322-3356-00 RES,FXD.METAL FILM:304 9K OHM.1%,0.2W 57668 CR820 FXE 24K 1A1R3033 322-3356-00 RES,FXD.METAL FILM:304 FX OHM.1%,0.2W 57668 CR820 FXE 54X 1A1R3033 322-3358-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 54X 1A1R3033 322-3369-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 54X 1A1R3033 322-3369-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 54X 1A1R3033 322-3369-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 54X 1A1R3035 322-3289-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 54X 1A1R3036 322-3243-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 54X 1A1R3037 322-3359-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 54X 1A1R3037 322-3359-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 15X 1A1R3037 322-3359-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 15X 1A1R3034 322-3328-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 15X 1A1R3034 322-3328-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 15X 1A1R3034 322-3328-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 15X 1A1R3034 322-3328-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 15X 1A1R3034 322-3328-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 34X 1A1R3034 322-3328-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 34X 1A1R3034 322-3328-00 RES,FXD.METAL FILM:305 CW 57668 CR820 FXE 34X 1A1R3034 322-3328-00 RES,FXD.MET | A1A1R2030 | 322-3239-00 | | | | RES,FXD,FILM:3.01K OHM,1%,0.2W | 57668 | CRB20 FXE 3K01 | | 1A1R2034 311-0634-00 RES,VAR,NONWW,TRMR,500 OHM,0.5W CERMET 3297 3329H-L58-501 1A1R2040 322-3139-00 RES,FXD,METAL FILM:274 OHM,1%,0.2W 57668 CR820 FXE 274 | A1A1R2031 | 322-3239-00 | | | | RES,FXD,FILM:3.01K OHM,1%,0.2W | 57668 | CRB20 FXE 3K01 | | TAIR2040 322-3139-00 RES.FXD.METAL.FILM.274 OHM.1%.0.2W 57668 CRB20 FXE 274 | A1A1R2033 | 322-3293-00 | | | | RES,FXD:METAL FILM:11.0K OHM,1%,0.2W | 57668 | CRB20 FXE 11K0 | | 1A1R2041 322–3134–00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE2431 1A1R2042 322–3134–00 RES,FXD,FILM:240 OHM,1%,0.2W 57668 CRB20 FXE2431 1A1R2043 322–3126–00 RES,FXD,FILM:200 OHM,1%,0.2W 57668 CRB20 FXE2100 1A1R3010 322–3097–00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R3030 322–3097–00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R3031 322–3356–00 RES,FXD,FILM:49,9K OHM,1%,0.2W 57668 CRB20 FXE 49K 1A1R3032 322–3356–00 RES,FXD,FILM:29,K OHM,1%,0.2W 57668 CRB20 FXE 544 1A1R3033 322–3165–00 RES,FXD,FILM:5110 OHM,1%,0.2W 57668 CRB20 FXE 511 1A1R3034 322-3289–00 RES,FXD,FILM:5111 OHM,1%,0.2W 57668 CRB20 FXE 511 1A1R3035 322-3243–00 RES,FXD,METAL FILM:10.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3036 322-3343–00 RES,FXD,METAL FILM:10.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3039 322-3327–00 RES,FXD,METAL FILM:10 | A1A1R2034 | 311-0634-00 | | | | RES,VAR,NONWW:TRMR,500 OHM,0.5W CERMET | 32997 | 3329H-L58-501 | | 1A1R2042 322–3134–00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE2438 1A1R2043 322–3126–00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R3010 322–3097–00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 120 1A1R3030 322–3097–00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 120 1A1R3031 322–3356–00 RES,FXD,FILM:49,9K OHM,1%,0.2W 57668 CRB20 FXE 49K 1A1R3032 322–3327–00 RES,FXD,FILM:49,9K OHM,1%,0.2W 57668 CRB20 FXE 49K 1A1R3033 322–3327–00 RES,FXD,FILM:511 OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3034 322–3326–00 RES,FXD,FILM:511 OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3035 322–3289–00 RES,FXD,METAL FILM:10.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3036 322–3324–00 RES,FXD,METAL FILM:18.2K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3037 322–3336–00 RES,FXD,METAL FILM:18.2K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3039 322–3327–00 RES,FXD,METAL F | A1A1R2040 | 322-3139-00 | | | | RES,FXD:METAL FILM:274 OHM,1%,0.2W | 57668 | CRB20 FXE 274E | | 1A1R2043 322-3126-00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R3010 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3020 322-3297-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R3030 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3031 322-3356-00 RES,FXD.FILM:49 PK OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3032 322-3327-00 RES,FXD.FILM:49 PK OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3033 322-3316-00 RES,FXD.FILM:511 OHM,1%,0.2W 57668 CRB20 FXE 511 1A1R3033 322-33261-00 RES,FXD.FILM:511 OHM,1%,0.2W 97637 CCF5005111FT 1A1R3035 322-3289-00 RES,FXD.FILM:511 OHM,1%,0.2W 97637 CCF5005111FT 1A1R3036 322-3243-00 RES,FXD.FILM:511 COMM,1%,0.2W 97637 CCF5005111FT 1A1R3037 322-3314-00 RES,FXD.METAL FILM:10.0K OHM,1%,0.2W 97637 CCF50-1-G332 1A1R3037 322-3314-00 RES,FXD.METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3038 322-3329-00 RES,FXD.FILM:249 PK OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3039 322-3325-00 RES,FXD.METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3040 322-3385-00 RES,FXD.FILM:200 OHM,1%,0.2W 97637 CCF50-2F610RC 1A1R3040 322-3325-00 RES,FXD.FILM:200 OHM,1%,0.2W 97637 CCF50-2F610RC 1A1R3041 322-316-00 RES,FXD.FILM:200 OHM,1%,0.2W 97637 CCF50-2F610RC 1A1R3042 322-3173-00 RES,FXD.FILM:511 K OHM,1%,0.2W 97637 CCF50-2F610RC 1A1R3041 322-3261-00 RES,FXD.FILM:511 K OHM,1%,0.2W 97637 CCF50-2F610RC 1A1R4023 322-3325-00 RES,FXD.FILM:511 K OHM,1%,0.2W 97637 CCF50-2F610RC 1A1R4023 322-3325-00 RES,FXD.FILM:51 K OHM,1%,0.2W 97637 CCF50-2F610RC 1A1R4023 322-3325-00 RES,FXD.FILM:51 K OHM,1%,0.2W 97637 CCF50-5F0-5F010R00RO 1A1R4043 322-3325-00 RES,FXD.FILM:52 K OHM,1%,0.2W 97637 CCF50-5F0-5F010R00RO 1A1R4040 322-3325-00 RES,FXD.FILM:52 K OHM,1%,0.2W 97637 CCF50-5F0-5F010R00RO 1A1R4040 322-3325-00 RES,FXD.FILM:52 K OHM,1%,0.2W 97637 CCF50-5F0-5F010R00RO 1A1R4040 322-3325-00 RES,FXD.FILM:52 S OHM,1%,0.2W 97637 CCF50-5F0-5F010R00RO 1A1R4040 322-3325-00 RES,FXD.FILM:52 S OHM,1%,0.2W 97637 CCF50-5F050-5T11FT 1A1R4041 322-3135-00 RES,FXD.FILM:52 S OHM,1%,0.2W 97637 C | A1A1R2041 | 322-3134-00 | | | | RES,FXD,FILM:243 OHM,1%,0.2W | 57668 | CRB20 FXE243E | | 1A1R3010 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3020 322-3297-00 RES,FXD.METAL FILM:12.1K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R3030 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3031 322-3356-00 RES,FXD.FILM:49 9K OHM,1%,0.2W 57668 CRB20 FXE 49K 1A1R3032 322-3327-00 RES,FXD.FILM:49 1K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3033 322-316-00 RES,FXD.FILM:5111 OHM,1%,0.2W 57668 CRB20 FXE 511 1A1R3034 322-3261-00 RES,FXD.METAL FILM:10,0.K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3035 322-3249-00 RES,FXD.METAL FILM:13.3X OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3036 322-3249-00 RES,FXD.METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3037 322-3314-00 RES,FXD.METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3039 322-3327-00 RES,FXD.FILM:24.9K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3041 322-3126-00 | A1A1R2042 | 322-3134-00 | | | | RES,FXD,FILM:243 OHM,1%,0.2W | 57668 | CRB20 FXE243E | | 1A1R3020 322-3297-00 RES,FXD.METAL FILM:12.1K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R3030 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3031 322-3356-00 RES,FXD.FILM:49.9K OHM,1%,0.2W 57668 CRB20 FXE 49K 1A1R3032 322-3327-00 RES,FXD.FILM:24.9K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3033 322-3165-00 RES,FXD.FILM:511 OHM,1%,0.2W 57668 CRB20 FXE 511 1A1R3034 322-3261-00 RES,FXD.FILM:511K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R3035 322-3289-00 RES,FXD.METAL FILM:10.0K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R3036 322-3243-00 RES,FXD.METAL FILM:13.32K OHM,1%,0.2W 91637 CCF50-1-G332 A1A1R3037 322-3314-00 RES,FXD.METAL FILM:15.0K OHM,1%,0.2W 91637 CCF50-1-G332 A1A1R3037 322-3314-00 RES,FXD.METAL FILM:15.0K OHM,1%,0.2W 91637 CCF50-1-G332 A1A1R3037 322-3306-00 RES,FXD.METAL FILM:15.0K OHM,1%,0.2W 91637 CCF50-1-G332 A1A1R3037 322-3385-00 RES,FXD.METAL FILM:15.0K OHM,1%,0.2W 91637 CCF50-1-G312 A1A1R3034 322-3315-00 RES,FXD.METAL FILM:10.0K OHM,1%,0.2W 91637 CCF50-12F619R A1A1R3042 322-3173-00 RES,FXD.METAL FILM:10.0K OHM,1%,0.2W 91637 CCF50-12F619R A1A1R3042 322-3173-00 RES,FXD.METAL FILM:10.0K OHM,1%,0.2W 91637 CCF50-12F619R A1A1R3042 322-3173-00 RES,FXD.METAL FILM:10.1K OHM,1%,0.2W 91637 CCF50-12F619R A1A1R3042 322-3173-00 RES,FXD.METAL FILM:10.1K OHM,1%,0.2W 91637 CCF50-12F619R A1A1R3043 322-3297-00 RES,FXD.METAL FILM:10.1K OHM,1%,0.2W 91637 CCF50-12F019R A1A1R3043 322-3297-00 RES,FXD.METAL FILM:10.1K OHM,1%,0.2W 91637 CCF50-12F019R A1A1R3043 322-3345-00 RES,FXD.METAL FILM:10.1K OHM,1%,0.2W 91637 CCF50-12F020R A1A1R3043 322-3345-00 RES,FXD.METAL FILM:10.1K OHM,1%,0.2W 91637 CCF50-12F020R A1A1R3043 322-3345-00 RES,FXD.METAL FILM:10.0K OHM,1%,0.2W 91637 CCF50-12F020R A1A1R3043 322-3345-00 RES,FXD.METAL FILM:10.2K OHM,1%,0.2W 91637 CCF50-12F020R A1A1R3043 322-3345-00 RES,FXD.METAL | A1A1R2043 | 322-3126-00 | | | | RES,FXD,FILM:200 OHM,1%,0.2W | 91637 | CCF501G200R0F | | 1A1R3030 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3031 322-3356-00 RES,FXD,FILM:49.9K OHM,1%,0.2W 57668 CRB20 FXE 49K 1A1R3032 322-3327-00 RES,FXD,FILM:511 OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3033 322-3261-00 RES,FXD,FILM:511 OHM,1%,0.2W 57668 CRB20 FXE 511 1A1R3034 322-3289-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 57668 CRB20
FXE 10K 1A1R3036 322-3243-00 RES,FXD,METAL FILM:10.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3037 322-3314-00 RES,FXD,METAL FILM:18.2K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3038 322-3324-00 RES,FXD,METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3039 322-3327-00 RES,FXD,METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3040 322-3385-00 RES,FXD,FILM:24.9K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R4021 322-3173-00 RES,FXD,FILM:200 OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R4020 322-3385-00 RES,FXD,FI | A1A1R3010 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | 1A1R3031 322-3356-00 RES,FXD,FILM:49,9K OHM,1%,0.2W 57668 CRB20 FXE 49K 1A1R3032 322-3327-00 RES,FXD,FILM:24,9K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3033 322-3165-00 RES,FXD,FILM:511 OHM,1%,0.2W 57668 CRB20 FXE 511 1A1R3034 322-3281-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R3035 322-3243-00 RES,FXD,METAL FILM:10.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3036 322-3314-00 RES,FXD,METAL FILM:18.2K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3037 322-3334-00 RES,FXD,METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3039 322-3337-00 RES,FXD,FILM:24.9K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3040 322-3385-00 RES,FXD,FILM:24.9K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3041 322-313-00 RES,FXD,FILM:20.0 OHM,1%,0.2W 91637 CCF50-2F610R0 1A1R4020 322-323-305-00 RES,FXD,FILM:20.0 OHM,1%,0.2W 91637 CCF50-2F619R0 1A1R4020 322-332-307-00 RES,FXD,FILM:511K OHM,1%,0.2W 91637 CCF50-2F619R0 1A1R40 | A1A1R3020 | 322-3297-00 | | | | RES,FXD:METAL FILM:12.1K OHM,1%,0.2W | 57668 | CRB20 FXE 12K1 | | 1A1R3032 322-3327-00 RES,FXD,FILM:24,9K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3033 322-3165-00 RES,FXD,FILM:511 OHM,1%,0.2W 57668 CRB20 FXE 511 1A1R3034 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R3035 322-3289-00 RES,FXD,METAL FILM:10.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3036 322-3243-00 RES,FXD,METAL FILM:18.2K OHM,1%,0.2W 91637 CCF50-1-G332 1A1R3037 322-3314-00 RES,FXD,METAL FILM:18.2K OHM,1%,0.2W 57668 CRB20 FXE 16K 1A1R3038 322-3306-00 RES,FXD,METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3040 322-3327-00 RES,FXD,FILM:24.9K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3041 322-3385-00 RES,FXD,FILM:200 OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R4020 322-3126-00 RES,FXD,FILM:511K OHM,1%,0.2W 91637 CCF501G200R0 1A1R4021 322-3297-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 97668 CRB20 FXE 12K 1A1R4022 322-3385-00 RES,FXD,FILM:5.1 | A1A1R3030 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | 1A1R3033 322-3165-00 RES,FXD,FILM:511 OHM,1%,0.2W 57668 CRB20 FXE 511 1A1R3034 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R3035 322-3289-00 RES,FXD:METAL FILM:10.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3036 322-3243-00 RES,FXD:METAL FILM:18.2K OHM,1%,0.2W 57668 CRB20 FXE 18K 1A1R3037 322-3314-00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 18K 1A1R3038 322-3327-00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 18K 1A1R3040 322-3325-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3041 322-3126-00 RES,FXD:FILM:20 OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3042 322-3173-00 RES,FXD:FILM:619 OHM,1%,0.2W 91637 CCF501G200R0 1A1R4020 322-329-200 RES,FXD:FILM:619 OHM,1%,0.2W 91637 CCF50-2F619R 1A1R4021 322-325-00 RES,FXD:FILM:51N CHM,1%,0.2W 91637 CCF50G5111FT 1A1R4023 322-325-00 RES,FXD:FILM:52.1K O | A1A1R3031 | 322-3356-00 | | | | RES,FXD,FILM:49.9K OHM,1%,0.2W | 57668 | CRB20 FXE 49K9 | | 1A1R3034 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R3035 322-3289-00 RES,FXD:METAL FILM:10.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3036 322-3243-00 RES,FXD:METAL FILM:3.32K OHM,1%,0.2W 91637 CCF50-1-G332 1A1R3037 322-3314-00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 18K 1A1R3038 322-3306-00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3039 322-3327-00 RES,FXD:METAL FILM:10K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3040 322-3385-00 RES,FXD:METAL FILM:200 OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3041 322-3126-00 RES,FXD.FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R4020 322-327-00 RES,FXD.FILM:619 OHM,1%,0.2W 91637 CCF50-1G200R0 1A1R4021 322-325-00 RES,FXD.FILM:511K OHM,1%,0.2W 91637 CCF50-2F619R 1A1R4022 322-3385-00 RES,FXD.FILM:511K OHM,1%,0.2W 91637 CCF50-2F619R 1A1R4023 322-3385-00 RES,FXD.FILM: | A1A1R3032 | 322-3327-00 | | | | RES,FXD,FILM:24.9K OHM,1%,0.2W | 57668 | CRB20 FXE 24K9 | | 1A1R3035 322-3289-00 RES,FXD:METAL FILM:10.0K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3036 322-3243-00 RES,FXD:METAL FILM:3.32K OHM,1%,0.2W 91637 CCF50-1-G332K 1A1R3037 322-3314-00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 18K 1A1R3038 322-3306-00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3039 322-3327-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3040 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 10K 1A1R3041 322-3173-00 RES,FXD:METAL FILM:120 OHM,1%,0.2W 91637 CCF50-1G200R0 1A1R3042 322-3173-00 RES,FXD:METAL FILM:12.1K OHM,1%,0.2W 91637 CCF50-2F619R 1A1R4020 322-3297-00 RES,FXD:METAL FILM:12.1K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R4021 322-325-00 RES,FXD:METAL FILM:10.0K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4033 322-335-00 RES,FXD:FILM:20.0 OHM,1%,0.2W 91637 CCF50-2-G402 1A1R4031 322-325-00< | A1A1R3033 | 322-3165-00 | | | | RES,FXD,FILM:511 OHM,1%,0.2W | 57668 | CRB20 FXE 511E | | 1A1R3036 322–3243–00 RES,FXD:METAL FILM:3.32K OHM,1%,0.2W 91637 CCF50–1–G332 1A1R3037 322–3314–00 RES,FXD:METAL FILM:18.2K OHM,1%,0.2W 57668 CRB20 FXE 18K 1A1R3038 322–3306–00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3039 322–3327–00 RES,FXD;FILM:24.9K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3040 322–3385–00 RES,FXD;FILM:200 OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3041 322–3173–00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF50-16200R0 1A1R3042 322–3173–00 RES,FXD,FILM:619 OHM,1%,0.2W 91637 CCF50-2F619R 1A1R4020 322–3297–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R4021 322–3261–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4023 322–3385–00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50-2–G402 1A1R4031 322–3261–00 RES,FXD,FILM:20.0 OHM,1%,0.2W 91637 CCF50-2–G402 1A1R4032 322–3281–00 RES,FXD,FILM:23.7K OHM,1%, | A1A1R3034 | 322-3261-00 | | | | RES,FXD,FILM:5.11K OHM,1%,0.2W | 91637 | CCF50G5111FT | | 1A1R3037 322–3314–00 RES,FXD:METAL FILM:18.2K OHM,1%,0.2W 57668 CRB20 FXE 18K 1A1R3038 322–3306–00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3039 322–3327–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3040 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3041 322–3126–00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R3042 322–3173–00 RES,FXD:METAL FILM:12.1K OHM,1%,0.2W 91637 CCF50-2F619R: 1A1R4020 322–3297–00 RES,FXD:METAL FILM:5.11K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R4021 322–3261–00 RES,FXD:METAL FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4023 322–3385–00 RES,FXD:METAL FILM:40.2K OHM,1%,0.2W 97637 CCF50-2–G402 1A1R4031 322–3126–00 RES,FXD,FILM:23.7K OHM,1%,0.2W 91637 CCF50-2–G402 1A1R4032 322–3256–00 RES,FXD,FILM:23.7K OHM,1%,0.2W 97668 CRB20 FXE 23K 1A1R4043 322–3281–00 | A1A1R3035 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | 1A1R3038 322-3306-00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 15K 1A1R3039 322-3327-00 RES,FXD;FILM:24.9K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3040 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3041 322-3126-00 RES,FXD,FILM:619 OHM,1%,0.2W 91637 CCF50-2F619R 1A1R4020 322-3297-00 RES,FXD;METAL FILM:12.1K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R4021 322-3261-00 RES,FXD;FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4022 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R4023 322-3347-00 RES,FXD;METAL FILM:40.2K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4030 322-3325-00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF50-2-G402 1A1R4031 322-3325-00 RES,FXD,FILM:23.7K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4040 322-3261-00 RES,FXD,FILM:23.7K OHM,1%,0.2W 97668 CRB20 FXE 23K 1A1R4041 322-3135-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 248 1A1R40 | A1A1R3036 | 322-3243-00 | | | | RES,FXD:METAL FILM:3.32K OHM,1%,0.2W | 91637 | CCF50-1-G33200F | | 1A1R3039 322-3327-00 RES,FXD,FILM:24.9K OHM,1%,0.2W 57668 CRB20 FXE 24K 1A1R3040 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3041 322-3126-00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF50-2F619R 1A1R3042 322-3173-00 RES,FXD,FILM:619 OHM,1%,0.2W 91637 CCF50-2F619R 1A1R4020 322-3297-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R4021 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4022 322-3385-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R4033 322-3347-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50-2-G4020 1A1R4030 322-3126-00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF50-2-G4020 1A1R4031 322-3325-00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4040 322-3281-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 57668 CRB20 FXE 24S 1A1R4041 322-3134-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 24S 1A1R4042 322-3 | A1A1R3037 | 322-3314-00 | | | | RES,FXD:METAL FILM:18.2K OHM,1%,0.2W | 57668 | CRB20 FXE 18K2 | | 1A1R3040 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R3041 322–3126–00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R3042 322–3173–00 RES,FXD,FILM:619 OHM,1%,0.2W 91637 CCF50–2F619RI 1A1R4020 322–3297–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R4021 322–3261–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4023 322–3385–00 RES,FXD,FILM:40.2K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R4030 322–3347–00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50-2–G402I 1A1R4031 322–3325–00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R4031 322–3325–00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4032 322–3261–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4040 322–3281–00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 248E
1A1R4041 322–3135–00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4043 322–3 | A1A1R3038 | 322-3306-00 | | | | RES,FXD:METAL FILM:15.0K OHM,1%,0.2W | 57668 | CRB20 FXE 15K0 | | 1A1R3041 322–3126–00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R3042 322–3173–00 RES,FXD,FILM:619 OHM,1%,0.2W 91637 CCF50-2F619R 1A1R4020 322–3297–00 RES,FXD:METAL FILM:12.1K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R4021 322–3261–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4022 322–3385–00 RES,FXD,FILM:40.2K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R4033 322–3347–00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF50-2-G402 1A1R4030 322–3126–00 RES,FXD,FILM:23.7K OHM,1%,0.2W 97668 CRB20 FXE 23K 1A1R4031 322–3261–00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4040 322–3281–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4041 322–3134–00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 248 1A1R4042 322–3135–00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 322–3135–00 RES,FXD,FILM:255 OHM,1%,0.2W 57668 CRB20 FXE 249 | A1A1R3039 | 322-3327-00 | | | | RES,FXD,FILM:24.9K OHM,1%,0.2W | 57668 | CRB20 FXE 24K9 | | 1A1R3042 322–3173–00 RES,FXD,FILM:619 OHM,1%,0.2W 91637 CCF50–2F619R0 1A1R4020 322–3297–00 RES,FXD;METAL FILM:12.1K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R4021 322–3261–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4022 322–3385–00 RES,FXD,FILM:40.2K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R4023 322–3347–00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50-2–G4020 1A1R4030 322–3126–00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R4031 322–3325–00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4032 322–3261–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4040 322–3281–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 57668 CRB20 FXE 24S 1A1R4041 322–3135–00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4042 322–3135–00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249E 1A1R4043 321–0136–00 RES,FXD,FILM:255 OHM,1%,0.125W 57668 CRB20 FXE 249E | A1A1R3040 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | 1A1R4020 322–3297–00 RES,FXD;METAL FILM:12.1K OHM,1%,0.2W 57668 CRB20 FXE 12K 1A1R4021 322–3261–00 RES,FXD;FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4022 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R4023 322–3347–00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50-2–G402 1A1R4030 322–3126–00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R4031 322–3325–00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4040 322–3261–00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4040 322–3281–00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 8K2 1A1R4041 322–3134–00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4042 322–3135–00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249E 1A1R4043 321–0136–00 RES,FXD,FILM:255 OHM,1%,0.125W 57668 CRB20 FXE 249E | A1A1R3041 | 322-3126-00 | | | | RES,FXD,FILM:200 OHM,1%,0.2W | 91637 | CCF501G200R0F | | 1A1R4021 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4022 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R4023 322-3347-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50-2-G4020 1A1R4030 322-3126-00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R4031 322-3325-00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4040 322-3281-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4041 322-3134-00 RES,FXD,FILM:5.5K OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4042 322-3135-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4043 321-0136-00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 321-0136-00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R3042 | 322-3173-00 | | | | RES,FXD,FILM:619 OHM,1%,0.2W | 91637 | CCF50-2F619R0F | | 1A1R4022 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100 1A1R4023 322-3347-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50-2-G402t 1A1R4030 322-3126-00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R4031 322-3325-00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4032 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4040 322-3281-00 RES,FXD,FILM:8.25K OHM,1%,0.2W 57668 CRB20 FXE 8K2 1A1R4041 322-3134-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4042 322-3135-00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 321-0136-00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R4020 | 322-3297-00 | | | | RES,FXD:METAL FILM:12.1K OHM,1%,0.2W | 57668 | CRB20 FXE 12K1 | | 1A1R4023 322-3347-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50-2-G4020 1A1R4030 322-3126-00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R4031 322-3325-00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4032 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4040 322-3281-00 RES,FXD,FILM:5.2K OHM,1%,0.2W 57668 CRB20 FXE 8K2 1A1R4041 322-3134-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4042 322-3135-00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 321-0136-00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R4021 | 322-3261-00 | | | | RES,FXD,FILM:5.11K OHM,1%,0.2W | 91637 | CCF50G5111FT | | 1A1R4030 322-3126-00 RES,FXD,FILM:200 OHM,1%,0.2W 91637 CCF501G200R0 1A1R4031 322-3325-00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4032 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4040 322-3281-00 RES,FXD,FILM:8.25K OHM,1%,0.2W 57668 CRB20 FXE 8K2 1A1R4041 322-3134-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4042 322-3135-00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 321-0136-00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R4022 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | 1A1R4031 322-3325-00 RES,FXD,FILM:23.7K OHM,1%,0.2W 57668 CRB20 FXE 23K 1A1R4032 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4040 322-3281-00 RES,FXD:METAL FILM:8.25K OHM,1%,0.2W 57668 CRB20 FXE 8K2 1A1R4041 322-3134-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4042 322-3135-00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 321-0136-00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R4023 | 322-3347-00 | | | | RES,FXD,FILM:40.2K OHM,1%,0.2W | 91637 | CCF50-2-G40201F | | 1A1R4032 322-3261-00 RES,FXD,FILM:5.11K OHM,1%,0.2W 91637 CCF50G5111FT 1A1R4040 322-3281-00 RES,FXD;METAL FILM:8.25K OHM,1%,0.2W 57668 CRB20 FXE 8K2 1A1R4041 322-3134-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4042 322-3135-00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 321-0136-00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R4030 | 322-3126-00 | | | | RES,FXD,FILM:200 OHM,1%,0.2W | 91637 | CCF501G200R0F | | 1A1R4040 322-3281-00 RES,FXD:METAL FILM:8.25K OHM,1%,0.2W 57668 CRB20 FXE 8K2 1A1R4041 322-3134-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE 243E 1A1R4042 322-3135-00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 321-0136-00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R4031 | 322-3325-00 | | | | RES,FXD,FILM:23.7K OHM,1%,0.2W | 57668 | CRB20 FXE 23K7 | | 1A1R4041 322-3134-00 RES,FXD,FILM:243 OHM,1%,0.2W 57668 CRB20 FXE243E 1A1R4042 322-3135-00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 321-0136-00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R4032 | 322-3261-00 | | | | RES,FXD,FILM:5.11K OHM,1%,0.2W | 91637 | CCF50G5111FT | | 1A1R4042 322-3135-00 RES,FXD,FILM:249 OHM,1%,0.2W 57668 CRB20 FXE 249 1A1R4043 321-0136-00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R4040 | 322-3281-00 | | | | RES,FXD:METAL FILM:8.25K OHM,1%,0.2W | 57668 | CRB20 FXE 8K25 | | 1A1R4043 321–0136–00 RES,FXD,FILM:255 OHM,1%,0.125W 19701 5043ED255R0F | A1A1R4041 | 322-3134-00 | | | | RES,FXD,FILM:243 OHM,1%,0.2W | 57668 | CRB20 FXE243E | | | A1A1R4042 | 322-3135-00 | | | | RES,FXD,FILM:249 OHM,1%,0.2W | 57668 | CRB20 FXE 249E | | 1A1R4044 322–3137–00 RES. FXD. FII. M:261. OHM. 1% 0.2W 57668 C.R.B20. FXF. 261 | A1A1R4043 | 321-0136-00 | | | | RES,FXD,FILM:255 OHM,1%,0.125W | 19701 | 5043ED255R0F | | 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 | A1A1R4044 | 322-3137-00 | | | | RES,FXD,FILM:261 OHM,1%,0.2W | 57668 | CRB20 FXE 261E | | ATATRAD48 322-3001-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_10ED ATATRAD48 322-3395-07 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 BZE_127K ATATRAD48 322-3395-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_10ED ATATRAD48 322-3164-00 RES_FXD_MEM_31_6K_OHM_1%_0.2W 57668 CRB20_FXE_499E ATATRAD40 322-3101-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_499E ATATRAD40 322-3001-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_10ED ATATRAD40 322-3008-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_10ED ATATRAD40 322-3088-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_10ED ATATRAD40 322-3088-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_10ED ATATRAD40 322-3088-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_40ED 322-3139-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_20ED ATATRAD40 322-3139-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_20ED ATATRAD40 322-3139-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2W 57668 CRB20_FXE_20ED ATATRAD40 322-3139-00 RES_FXD_METAL_FILM-10_OHM_1%_0.2 | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number |
--|----------------|--------------------------|-------------------------|-------------------------|-----|---------------------------------------|--------------|------------------| | ATATR 4047 322-3141-00 RES.FXD.FILM.287 OHM,1%,0.2W 57668 CR820 FXE 287E ATATR 4048 322-3001-00 RES.FXD.METAL FILM.10 OHM,1%,0.2W 57668 CR820 FXE 287E ATATR 4048 322-3399-07 RES.FXD.METAL FILM.10 OHM,1%,0.2W 57668 DXET 27X ATATR 4048 322-3399-00 RES.FXD.METAL FILM.10 OHM,1%,0.2W 57668 CR820 FXE 10K0 ATATR 5023 322-3337-00 RES.FXD.FILM.316 OHM,1%,0.2W 57668 CR820 FXE 10K0 ATATR 5023 322-3301-00 RES.FXD.FILM.310 OHM,1%,0.2W 57668 CR820 FXE 10E0 ATATR 5023 322-3001-00 RES.FXD.METAL FILM.10 OHM,1%,0.2W 57668 CR820 FXE 10E0 ATATR 5023 322-3001-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 10E0 ATATR 5023 322-3001-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 10E0 ATATR 5023 322-3001-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 10E0 ATATR 5023 322-3001-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 10E0 ATATR 5023 322-3001-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 20E0 ATATR 5023 322-3001-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 20E0 ATATR 5023 322-3007-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 20E0 ATATR 5023 322-3007-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 20E0 ATATR 5023 322-3008-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3008-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3056-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3056-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3058-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3058-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3058-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3058-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3058-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3058-00 RES.FXD.METAL FILM.49 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5023 322-3059-00 RES.FXD.METAL FILM.502 OHM,1%,0.2W 57668 CR820 FXE 30E0 ATATR 5024 322-3059-00 RES.FXD.METAL F | A1A1R4045 | 322-3138-00 | | | | RES,FXD,FILM:267 OHM,1%,0.2W | 57668 | CRB20 FXE 267E | | ATATER 4048 322-3001-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 10ED ATATER 5020 322-3395-07 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 DXE 12TK ATATER 5020 322-3337-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 10ED ATATER 5023 322-3164-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 499E ATATER 5023 322-3164-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 499E ATATER 5023 322-3001-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 10ED ATATER 5023 322-3008-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 10ED ATATER 5023 322-3088-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 10ED ATATER 5023 322-3089-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 10ED ATATER 5023 322-3209-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 2000 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 2000 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 2000 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 2000 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 2000 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 409E ATATER 5023 322-3088-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 409E ATATER 5023 322-3088-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 409E ATATER 5023 322-3088-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 409E ATATER 5023 322-3250-00 RES, FXD.METAL FILM:10 OHM, 1%, 0.2W 57668 CRB20 FXE 409E ATATER 5023 322-3250-00 RES, FXD.METAL FILM:10 FXD.WW 57668 CRB20 FXE 409E ATATER 5023 322-3250-00 RES, FXD.METAL FILM:10 FXD.WW 57668 CRB20 FXE 409E ATATER 5023 322-3250-00 RES, FXD.METAL FILM:10 FXD.WW 57668 CRB20 FXE 409E ATATER 5023 322-3250-00 RES, FXD.METAL FILM:10 FXD.WW 57668 CRB20 FXE 409E ATATER 5023 322-3250-00 RES, FXD.METAL FILM:10 FXD.WW 57668 CRB20 FXE 2020 RES, FXD.METAL FILM:10 FXD.WW 57668 | A1A1R4046 | 322-3139-00 | | | | RES,FXD:METAL FILM:274 OHM,1%,0.2W | 57668 | CRB20 FXE 274E | | ATATERSO20 322–3995–07 RES_FXD_FILM:127K OHM,1%,0.2W 57668 BZE127K ATATERSO21 322-3037–00 RES_FXD_FILM:10 KO OHM,1%,0.2W 97637 CCF50-25031601FT ATATERSO22 322-3337–00 RES_FXD_FILM:31 6K OHM,1%,0.2W 97637 CCF50-25031601FT ATATERSO23 322-3164-00 RES_FXD_FILM:31 6K OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATERSO24 322-3001–00 RES_FXD_FILM:31 6K OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATERSO25 322-3001-00 RES_FXD_FILM:410 OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATERSO25 322-3001-00 RES_FXD_FILM:410 OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATERSO26 322-3080-00 RES_FXD_FILM:410 OHM,1%,0.2W 57668 CRB20 FXE 8060 ATATERSO33 322-3220-00 RES_FXD_FILM:400 OHM,1%,0.2W 57668 CRB20 FXE 8060 ATATERSO33 322-3220-00 RES_FXD_FILM:400 OHM,1%,0.2W 57668 CRB20 FXE 8060 ATATERSO33 322-3080-00 RES_FXD_FILM:520 OHM,1%,0.2W 57668 CRB20 FXE 8060 ATATERSO34 322-3130-00 RES_FXD_FILM:520 OHM,1%,0.2W 57668 CRB20 FXE 8060 ATATERSO34 322-3130-00 RES_FXD_FILM:400 OHM,1%,0.2W 57668 CRB20 FXE 8 | A1A1R4047 | 322-3141-00 | | | | RES,FXD,FILM:287 OHM,1%,0.2W | 57668 | CRB20 FXE 287E | | ATATR\$021 322-3289-00 RES.FXD.METAL FILM-10.0K OHM,1%,0.2W 91637 CCF502G31601FT ATATR\$022 322-3337-00 RES.FXD.FILM-31.6K OHM,1%,0.2W 91637 CCF502G31601FT ATATR\$023 322-3001-00 RES.FXD.FILM-390 OHM,1%,0.2W 57668 CR820 FXE 10E0 ATATR\$024 322-3001-00 RES.FXD.METAL FILM-10.0HM,1%,0.2W 57668 CR820 FXE 10E0 ATATR\$026 322-3001-00 RES.FXD.METAL FILM-10.0HM,1%,0.2W 57668 CR820 FXE 10E0 ATATR\$030 322-3068-00 RES.FXD.METAL FILM-49.9 OHM,0.1%,0.2W 57668 CR820 FXE 10E0 ATATR\$030 322-3280-00 RES.FXD.METAL FILM-49.9 OHM,0.1%,0.2W 57668 CR820 FXE 20E0 ATATR\$031 322-3222-00 RES.FXD.METAL FILM-40.9 OHM,1%,0.2W 57668 CR820 FXE 20E0 ATATR\$031 322-322-3097-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 20E0 ATATR\$033 322-3280-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 20E0 ATATR\$033 322-3280-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 20E0 ATATR\$033 322-3260-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 40E9 ATATR\$033 322-3250-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 40E9 ATATR\$033 322-3250-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 40E9 ATATR\$033 322-3260-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 40E9 ATATR\$033 322-3260-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 40E2 ATATR\$033 322-3262-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 40E2 ATATR\$033 322-3262-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 40E2 ATATR\$033 322-3262-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 40E2 ATATR\$040 322-3139-00 RES.FXD.METAL FILM-40.9 OHM,0.1%,0.2W 57668 CR820 FXE 40E2 ATATR\$040 322-3139-00 RES.FXD.METAL FILM-40.9 OHM,1%,0.2W 57668 CR820 FXE 40E2 ATATR\$040 322-3139-00 RES.FXD.METAL FILM-40.9 OHM,1%,0.2W 57668 CR820 FXE 40E2 ATATR\$040 322-3139-00 RES.FXD.METAL FILM-40.9 OHM,1%,0.2W 57668 CR820 FXE 40E2 ATATR\$040 322-3139-00 RES.FXD.METAL FILM-40.9 OHM,1%,0.2W 57668 CR820 FXE 40E2 ATATR\$040 322-3139-00 RES.FXD.METAL FILM-40.0 OHM,1%,0.2W 57668 CR820 FXE 40E2 ATATR\$040 322-3139-00 RES.FXD.METAL FILM-40.0 OHM,1%,0 | A1A1R4048 | 322-3001-00 | | | | RES,FXD:METAL FILM:10 OHM,1%,0.2W | 57668 | CRB20 FXE10E0 | | ATATRS022 322-3337-00 RES,FXD,FILM:31.6K OHM,1%,0.2W 91637 CCF502G31601FT ATATRS023 322-3164-00 RES,FXD,FILM:499 OHM,1%,0.2W 57668 CR820 FXE 499E ATATRS024 322-3001-00 RES,FXD,METAL,FILM:10 OHM,1%,0.2W 57668 CR820 FXE 10E0 ATATRS025 322-3068-00 RES,FXD,METAL,FILM:10 OHM,1%,0.2W 57668 CR820 FXE 10E0 ATATRS033 322-3280-00 RES,FXD,METAL,FILM:499 OHM,0.1%,0.2W 57668 CR820 FXE 806 ATATRS031 322-3222-00 RES,FXD,METAL,FILM:499 OHM,0.50,0.W 57668 CR820 FXE
806 ATATRS032 322-3097-00 RES,FXD,METAL,FILM:499 OHM,0.0,0.W 57668 CR820 FXE 806 ATATRS033 322-3097-00 RES,FXD,METAL,FILM:499 OHM,0.1%,0.2W 57668 CR820 FXE 806 ATATRS033 322-3098-00 RES,FXD,METAL,FILM:499 OHM,0.1%,0.2W 57668 CR820 FXE 806 ATATRS033 322-3088-00 RES,FXD,METAL,FILM:499 OHM,0.1%,0.2W 57668 CR820 FXE 806 ATATRS033 322-3080-00 RES,FXD,METAL,FILM:499 OHM,0.1%,0.2W 57668 CR820 FXE 806 ATATRS033 322-3080-00 RES,FXD,METAL,FILM:499 OHM,0.1%,0.2W 57668 CR820 FXE 806 ATATRS033 322-3080-00 RES,FXD,METAL,FILM:499 OHM,0.0,0.W 57668 CR820 FXE 806 ATATRS033 322-3250-00 RES,FXD,METAL,FILM:499 OHM,0.0,0.W 57668 CR820 FXE 806 ATATRS033 322-3250-00 RES,FXD,FILM:400 OHM,1%,0.2W 57668 CR820 FXE 806 ATATRS033 322-3262-00 RES,FXD,FILM:402K OHM,1%,0.2W 57668 CR820 FXE 802 ATATRS033 322-3262-00 RES,FXD,FILM:402K OHM,1%,0.2W 57668 CR820 FXE 802 ATATRS033 322-3262-00 RES,FXD,FILM:402K OHM,1%,0.2W 57668 CR820 FXE 200 ATATRS033 322-3190-00 RES,FXD,FILM:513 OHM,1%,0.2W 57668 CR820 FXE 200 ATATRS043 322-3175-00 RES,FXD,FILM:513 OHM,1%,0.2W 57668 CR820 FXE 200 ATATRS043 322-3180-00 RES,FXD,FILM:513 OHM,1%,0.2W 57668 CR820 FXE 200 ATATRS043 322-3180-00 RES,FXD,FILM:510 OHM,1%,0.2W 57668 CR820 FXE 100E ATATRS044 322-3195-00 RES,FXD,FILM:10X OHM,1%,0.2W 57668 CR820 FXE 100E ATATRS044 322-3195-00 RES,FXD,F | A1A1R5020 | 322-3395-07 | | | | RES,FXD,FILM:127K OHM,1%,0.2W | 57668 | BZE127K | | ATATR5023 322-3164-00 RES_FXD_FILM-499 OHM,1%.0.2W 57668 CRB20 FXE 199E ATATR5024 322-3001-00 RES_FXD_METAL FILM-10 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5026 322-3068-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5026 322-3088-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5026 322-33280-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 20E0 ATATR5031 322-3222-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 20E0 ATATR5032 322-3097-00 RES_FXD_METAL FILM-10 OHM,1%.0.2W 57668 CRB20 FXE 20E0 ATATR5033 322-3088-00 RES_FXD_METAL FILM-10 OHM,1%.0.2W 57668 CRB20 FXE 40E9 ATATR5034 322-3184-00 RES_FXD_METAL FILM-10 OHM,1%.0.2W 57668 CRB20 FXE 40E9 ATATR5033 322-3088-00 RES_FXD_METAL FILM-10 OHM,1%.0.2W 57668 CRB20 FXE 40E9 ATATR5034 322-3184-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 40E9 ATATR5034 322-3350-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 40E9 ATATR5035 322-3250-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 40E9 ATATR5031 322-3262-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 40E2 ATATR5031 322-3262-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 20E2 ATATR5032 322-3150-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 20E2 ATATR5033 322-3251-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 20E2 ATATR5040 322-3222-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 20E2 ATATR5041 321-0960-07 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 20E0 ATATR5043 322-3185-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5043 322-3185-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5043 322-3194-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5044 322-3194-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5043 322-3194-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5044 322-3194-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5043 322-3194-00 RES_FXD_METAL FILM-19 OHM,1%.0.2W 57668 CRB20 FXE 10E0 ATATR5044 322-3194-00 RES_FXD_METAL FILM-19 OHM, | A1A1R5021 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | ATATR5024 322-3001-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE10ED ATATR5025 322-3001-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 10ED ATATR5026 322-3068-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 49E9 ATATR5030 322-322-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 48E0 ATATR5031 322-3222-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 100E ATATR5031 322-3222-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 100E ATATR5033 322-3068-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 40E9 ATATR5033 322-3068-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 40E9 ATATR5033 322-3250-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 40E9 ATATR5031 322-3250-00 RES,FXD.METAL FILM-19 9 OHM,0.1%,0.2W 57668 CRB20 FXE 40E9 ATATR5031 322-3250-00 RES,FXD.METAL FILM-19 9 OHM,0.1%,0.2W 57668 CRB20 FXE 40E9 ATATR5031 322-3250-00 RES,FXD.METAL FILM-19 9 OHM,0.1%,0.2W 57668 CRB20 FXE 40E9 ATATR6031 322-3250-00 RES,FXD.METAL FILM-19 OHM,1%,0.2W 57668 CRB20 FXE 40E9 ATATR6031 322-3250-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 5X23 ATATR6031 322-3250-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 20E0 ATATR6031 322-3250-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 20E0 ATATR6041 322-3250-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 20E0 ATATR6041 322-3159-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 20E0 ATATR6041 322-3159-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 20E0 ATATR6043 322-3175-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATR6043 322-3175-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATR6044 322-3194-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATR6045 322-3175-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATR6047 322-3194-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATR6047 322-3194-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 10E0 ATATR7011 322-3097-00 RES,FXD.METAL FILM-10 OHM,1%,0.2W 57668 CRB20 FXE 10E ATATR7011 322-3097-00 RES,FXD.METAL | A1A1R5022 | 322-3337-00 | | | | RES,FXD,FILM:31.6K OHM,1%,0.2W | 91637 | CCF502G31601FT | | ATATR5025 322-3001-00 RES,FXD:METAL FILM:10 OHM,1%,0.2W 57668 CRB20 FXE 1026 ATATR5026 322-3068-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 49E9 ATATR5030 322-3220-00 RES,FXD:METAL FILM:200K OHM,1%,0.2W 57668 CRB20 FXE 4806 ATATR5031 322-3222-00 RES,FXD:METAL FILM:200K OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATATR5031 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 400E ATATR5033 322-32368-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 400E ATATR5034 322-3184-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 40E9 ATATR5035 322-3250-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 40E9 ATATR5036 322-3250-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 40E9 ATATR6030 322-3250-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 40E9 ATATR6031 322-326-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 40E9 ATATR6032 322-3251-00 RES,FXD:METAL FILM:5.23K OHM.1,0.2W 57668 CRB20 FXE 40E9 ATATR6032 322-3251-00 RES,FXD:METAL FILM:5.20K OHM,1%,0.2W 57668 CRB20 FXE 40E2 ATATR6043 322-3225-00 RES,FXD:METAL FILM:5.20K OHM,1%,0.2W 57668 CRB20 FXE 274E ATATR6040 322-3222-00 RES,FXD:METAL FILM:5.20K OHM,1%,0.2W 57668 CRB20 FXE 274E ATATR6041 321-0960-07 RES,FXD:METAL FILM:520K OHM,1%,0.2W 57668 CRB20 FXE 280E ATATR6043 322-3175-00 RES,FXD:METAL FILM:520 KO HM,1%,0.2W 57668 CRB20 FXE 825E ATATR6044 322-3175-00 RES,FXD:METAL FILM:520 KO HM,1%,0.2W 57668 CRB20 FXE 825E ATATR6044 322-3194-00 RES,FXD:METAL FILM:520 KO HM,1%,0.2W 57668 CRB20 FXE 1830 ATATR6047 322-3231-00 RES,FXD:METAL FILM:50 KO HM,1%,0.2W 57668 CRB20 FXE 1830 ATATR6047 322-3231-00 RES,FXD:METAL FILM:50 KO HM,1%,0.2W 57668 CRB20 FXE 1830 ATATR6047 322-33194-00 RES,FXD:METAL FILM:50 KO HM,1%,0.2W 57668 CRB20 FXE 1830 ATATR6047 322-33194-00 RES,FXD:METAL FILM:50 KO HM,1%,0.2W 57668 CRB20 FXE 1830 ATATR6047 322-33194-00 RES,FXD:METAL FILM:50 KO HM,1%,0.2W 57668 CRB20 FXE 1830 ATATR7010 322-3114-00 RES,FXD:METAL FILM:50 KO HM,1%,0.2W 57668 CRB20 FXE 1830 ATATR7011 322-3097-00 RES,FXD:METAL FILM:50 CM HM,1%,0 | A1A1R5023 | 322-3164-00 | | | | RES,FXD,FILM:499 OHM,1%,0.2W | 57668 | CRB20 FXE 499E | | ATAIR5026 322-3068-00 RES,FXD.METAL FILM:49,9 OHM.0.1%,0.2W 57668 CRB20 FXE 49E9 ATAIR5030 322-3222-00 RES,FXD.METAL FILM:2.00K OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATAIR5031 322-3222-00 RES,FXD.METAL FILM:2.00K OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATAIR5033 322-3086-00 RES,FXD.METAL FILM:40 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIR5033 322-3184-00 RES,FXD.METAL FILM:49,9 OHM.0.1%,0.2W 57668 CRB20 FXE 9E9 ATAIR5033 322-3250-00 RES,FXD.METAL FILM:49,9 OHM.0.1%,0.2W 57668 CRB20 FXE 806E ATAIR5033 322-3250-00 RES,FXD.METAL FILM:3.9XK OHM,1%,0.2W 57668 CRB20 FXE 806E ATAIR6033 322-3250-00 RES,FXD.METAL FILM:3.9XK OHM,1%,0.2W 57668 CRB20 FXE 40E9 ATAIR6031 322-3262-00 RES,FXD.METAL FILM:3.9XK OHM,1%,0.2W 57668 CRB20 FXE 40E9 ATAIR6032 322-3251-00 RES,FXD.METAL FILM:3.9XK OHM,1%,0.2W 57668 CRB20 FXE 40E9 ATAIR6033 322-33139-00 RES,FXD.METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 40E2 ATAIR6040 322-3222-00 RES,FXD.METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 274E ATAIR6041 321-0960-07 RES,FXD.METAL FILM:20K OHM,1%,0.2W 57668 CRB20 FXE 274E ATAIR6043 322-3155-00 RES,FXD.METAL FILM:20K OHM,1%,0.2W 57668 CRB20 FXE 274E ATAIR6043 322-3150-00 RES,FXD.METAL FILM:20K OHM,1%,0.2W 57668 CRB20 FXE 274E ATAIR6043 322-3150-00 RES,FXD.METAL FILM:20K OHM,1%,0.2W 57668 CRB20 FXE 274E ATAIR6043 322-3150-00 RES,FXD.FILM:10X10 OHM,1%,0.2W 57668 CRB20 FXE 825E ATAIR6043 322-3130-00 RES,FXD.FILM:10X10 OHM,1%,0.2W 57668 CRB20 FXE 825E ATAIR6043 322-3130-00 RES,FXD.FILM:10X10 OHM,1%,0.2W 57668 CRB20 FXE 825E ATAIR6043 322-3130-00 RES,FXD.FILM:10X10 OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIR6043 322-3213-00 RES,FXD.FILM:10X10 OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIR6043 322-3213-00 RES,FXD.FILM:10X10 OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIR6043 322-3310-00 RES,FXD.FILM:10X10 OHM,1%,0.2W 57668 CRB20 FXE 10X1 ATAIR7011 322-3154-00 RES,FXD.METAL FILM:10X OHM,1%,0.2W 57668 CRB20 FXE 10X1 ATAIR7013 322-3150-00 RES,FXD.METAL FILM:10X10 OHM,1%,0.2W 57668 CRB20 FXE 10X1 ATAIR7013 322-3154-00 RES,FXD.METAL FILM:10X10 OHM,1%,0.2W 57668 CRB20 FXE 10X1 ATAIR7014 322-3154-00 | A1A1R5024 | 322-3001-00 | | | | RES,FXD:METAL FILM:10 OHM,1%,0.2W | 57668 | CRB20 FXE10E0 | | ATAIRS030 322–3280-00
RES,FXD,FILM:8.06K OHM,1%,0.2W 57668 CRB20 FXE 8K06 ATAIRS031 322–3297-00 RES,FXD:METAL FILM:1.00 OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATAIRS032 322–3097-00 RES,FXD:METAL FILM:1.00 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIRS033 322–3068-00 RES,FXD:METAL FILM:1.00 OHM,1%,0.2W 57668 CRB20 FXE 49E9 ATAIRS034 322–3184-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 49E9 ATAIRS035 322–3250-00 RES,FXD:METAL FILM:39.2K OHM,1%,0.2W 91637 CCF50–279200F ATAIRS036 322–326-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 49E9 ATAIRS031 322–3262-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 49E9 ATAIRS032 322–3252-100 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 5423 ATAIRS033 322–3319-00 RES,FXD:METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 4K02 ATAIRS040 322–3222-00 RES,FXD:METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 274E ATAIRS040 322–3222-00 RES,FXD:METAL FILM:200K OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATAIRS041 321–0960-07 RES,FXD:METAL FILM:200K OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATAIRS043 322–3135-00 RES,FXD:METAL FILM:200K OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATAIRS043 322–3145-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 649E ATAIRS043 322–3154-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 649E ATAIRS043 322–3104-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIRS044 322–3104-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIRS047 322–323-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIRS047 322–323-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIRT0710 322–3104-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIRT0711 322–3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIRT0712 322–3104-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIRT0713 322–3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIRT0713 322–3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIRT0713 322–3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E | A1A1R5025 | 322-3001-00 | | | | RES,FXD:METAL FILM:10 OHM,1%,0.2W | 57668 | CRB20 FXE10E0 | | ATAIRS031 322–3222-00 RES,FXD:METAL FILM:2.00K OHM,1%,0.2W 57668 CR820 FXE 2K0 OR ATAIRS032 322–3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CR820 FXE 100E ATAIRS033 322–3184-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CR820 FXE 49E9 ATAIRS034 322–3184-00 RES,FXD:METAL FILM:3.92K OHM,1%,0.2W 57668 CR820 FXE 806E ATAIRS035 322–3250-00 RES,FXD:METAL FILM:3.92K OHM,1%,0.2W 57668 CR820 FXE 49E9 ATAIRS030 322–3068-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CR820 FXE 49E9 ATAIRS031 322–3262-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CR820 FXE 49E9 ATAIRS031 322–3252-100 RES,FXD:METAL FILM:5.23K OHM,1.0.2W 57668 CR820 FXE 49E9 ATAIRS032 322–3329-00 RES,FXD:METAL FILM:2.0X OHM,1%,0.2W 57668 CR820 FXE 4022 ATAIRS033 322–3329-00 RES,FXD:METAL FILM:2.0X OHM,1%,0.2W 57668 CR820 FXE 274E ATAIRS040 322–3222-00 RES,FXD:METAL FILM:2.0X OHM,1%,0.2W 57668 CR820 FXE 274E ATAIRS040 322–3222-00 RES,FXD:METAL FILM:2.0X OHM,1%,0.2W 57668 CR820 FXE 2800 ATAIRS041 321–0960-07 RES,FXD:METAL FILM:2.0X OHM,1%,0.2W 57668 CR820 FXE 2800 ATAIRS040 322–3135-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CR820 FXE 285E ATAIRS040 322–3194-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CR820 FXE 825E ATAIRS040 322–3194-00 RES,FXD:METAL FILM:1.0X OHM,1%,0.2W 57668 CR820 FXE 1830 ATAIRS040 322–3224-00 RES,FXD:METAL FILM:1.0X OHM,1%,0.2W 57668 CR820 FXE 1830 ATAIRS040 322–323-00 RES,FXD:METAL FILM:1.0X OHM,1%,0.2W 57668 CR820 FXE 1862 ATAIRS040 322–3204-00 RES,FXD:METAL FILM:1.0X OHM,1%,0.2W 57668 CR820 FXE 1862 ATAIRS040 322-3204-00 RES,FXD:METAL FILM:1.0X OHM,1%,0.2W 57668 CR820 FXE 1862 ATAIRS040 322-3204-00 RES,FXD:METAL FILM:1.0X OHM,1%,0.2W 57668 CR820 FXE 1862 ATAIRS041 322-3097-00 RES,FXD:METAL FILM:1.0X OHM,1%,0.2W 57668 CR820 FXE 100E ATAIRS011 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CR820 FXE 100E ATAIRS011 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CR820 FXE 100E ATAIRS011 322-3154-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CR820 FXE 100E ATAIRS011 322-3310-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CR8 | A1A1R5026 | 322-3068-00 | | | | RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W | 57668 | CRB20 FXE 49E9 | | ATAIRS032 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIRS033 322-3068-00 RES,FXD.METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 49E9 ATAIRS034 322-3184-00 RES,FXD.METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 806E ATAIRS035 322-3250-00 RES,FXD.METAL FILM:3.92K OHM,1%,0.2W 91637 CCF50-2F39200F ATAIR6030 322-368-00 RES,FXD.METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 49E9 ATAIR6031 322-3252-00 RES,FXD.METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 5K23 ATAIR6032 322-3251-00 RES,FXD.METAL FILM:240 OHM,1%,0.2W 57668 CRB20 FXE 4K02 ATAIR6033 322-3139-00 RES,FXD.METAL FILM:240 OHM,1%,0.2W 57668 CRB20 FXE 274E ATAIR6040 322-3222-00 RES,FXD.METAL FILM:240 OHM,1%,0.2W 57668 CRB20 FXE 274E ATAIR6041 321-0960-07 RES,FXD.METAL FILM:250 OHM,1%,0.2W 57668 CRB20 FXE 2640 ATAIR6043 322-3175-00 RES,FXD.METAL FILM:250 OHM,1%,0.2W 57668 CRB20 FXE 2640 ATAIR6043 322-3185-00 RES,FXD.METAL FILM:250 OHM,1%,0.2W 57668 CRB20 FXE 649E ATAIR6043 322-3185-00 RES,FXD.METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 825E ATAIR6044 322-3194-00 RES,FXD.METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIR6045 322-3213-00 RES,FXD.METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIR6046 322-3213-00 RES,FXD.METAL FILM:162K OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIR6047 322-3213-00 RES,FXD.METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 1830 ATAIR6040 322-3114-00 RES,FXD.METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 1862 ATAIR7010 322-3097-00 RES,FXD.METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 1802 ATAIR7011 322-3097-00 RES,FXD.METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIR7013 322-3154-00 RES,FXD.METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 121E ATAIR7014 322-3154-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 121E ATAIR7015 322-3154-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIR7015 322-3154-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIR7015 322-3154-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATAIR7015 322-3154-00 RES,FXD.METAL FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 100E AT | A1A1R5030 | 322-3280-00 | | | | RES,FXD,FILM:8.06K OHM,1%,0.2W | 57668 | CRB20 FXE 8K06 | | ATATRS033 322-3068-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 49E9 ATATRS034 322-3184-00 RES,FXD:METAL FILM:39.2W 57668 CRB20 FXE 806E ATATRS035 322-3250-00 RES,FXD:METAL FILM:3.92K OHM,1%,0.2W 91637 CCF50-2F39200F ATATRS030 322-3088-00 RES,FXD:METAL FILM:3.92K OHM,1%,0.2W 57668 CRB20 FXE 49E9 ATATRS031 322-3252-00 RES,FXD:METAL FILM:4.9.9 OHM,0.1%,0.2W 57668 CRB20 FXE 5K23 ATATRS032 322-3251-00 RES,FXD:METAL FILM:240 OHM,1%,0.2W 57668 CRB20 FXE 4K02 ATATRS033 322-3139-00 RES,FXD:METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 274E ATATRS040 322-3222-00 RES,FXD:METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 274E ATATRS040 322-3222-00 RES,FXD:METAL FILM:20X OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATATRS041 321-960-07 RES,FXD:METAL FILM:513 OHM,0.1%,0.125W 01121 ADVISE ATATRS040 322-3175-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 649E ATATRS040 322-3185-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 825E ATATRS040 322-3184-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATATRS040 322-324-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATATRS040 322-323-300 RES,FXD:METAL FILM:10X OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATATRS040 322-324-00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 1K62 ATATRS041 322-3097-00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 1K62 ATATRT010 322-3097-00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 1K62 ATATRT011 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 1K02 ATATRT011 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 1100E ATATRT011 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 1100E ATATRT011 322-3154-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 1100E ATATRT013 322-3154-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 110E ATATRT014 322-3154-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 110E ATATRT015 322-3154-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 110E ATATRT016 322-3154-00 RES,FXD:METAL FILM:300 OHM,1%,0.2W 57668 CRB20 FXE 1685 ATATRT017 322-3154-00 | A1A1R5031 | 322-3222-00 | | | | RES,FXD:METAL FILM:2.00K OHM,1%,0.2W | 57668 | CRB20 FXE 2K00 | | ATATR5034 322-3184-00 RES,FXD,FILM:806 OHM,1%,0.2W 57668 CR820 FXE 806E ATATR5035 322-3250-00 RES,FXD,METAL FILM:3.92K OHM,1%,0.2W 91637 CCF50-2F39200F ATATR6030 322-3068-00 RES,FXD,METAL FILM:49.9 OHM,0.1%,0.2W 57668 CR820 FXE 49E9 ATATR6031 322-3262-00 RES,FXD,FILM:5.23K OHM,10.2W 57668 CR820 FXE 5K23 ATATR6032 322-3251-00 RES,FXD,METAL FILM:274 OHM,1%,0.2W 57668 CR820 FXE 4K02 ATATR6033 322-3139-00 RES,FXD,METAL FILM:274 OHM,1%,0.2W 57668 CR820 FXE 274E ATATR6040 322-3222-00 RES,FXD,METAL FILM:2.00K OHM,1%,0.2W 57668 CR820 FXE 2K00 ATATR6041 321-0960-07 RES,FXD,METAL FILM:2.00K OHM,1%,0.2W 57668 CR820 FXE 2K00 ATATR6042 322-3175-00 RES,FXD,METAL FILM:825 OHM,1%,0.2W 57668 CR820 FXE 649E ATATR6043 322-3185-00 RES,FXD,METAL FILM:825 OHM,1%,0.2W 57668 CR820 FXE 825E ATATR6044 322-3194-00 RES,FXD,METAL FILM:825 OHM,1%,0.2W 57668 CR820 FXE 825E ATATR6045 322-3223-00 RES,FXD,FILM:1.02K OHM,1%,0.2W 57668 CR820 FXE 1K30 ATATR6046 322-3213-00 RES,FXD,FILM:1.02K OHM,1%,0.2W 57668 CR820 FXE 1K62 ATATR6047 322-3223-00 RES,FXD,METAL FILM:150 OHM,1%,0.2W 57668 CR820 FXE 1K62 ATATR7010 322-3114-00 RES,FXD,METAL FILM:150 OHM,1%,0.2W 57668 CR820 FXE 1K62 ATATR7011 322-3097-00 RES,FXD,METAL FILM:150 OHM,1%,0.2W 57668 CR820 FXE 1K62 ATATR7013 322-3105-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CR820 FXE 100E ATATR7013 322-3105-00 RES,FXD,METAL FILM:101 OHM,1%,0.2W 57668 CR820 FXE 100E ATATR7013 322-315-00 RES,FXD,METAL FILM:101
OHM,1%,0.2W 57668 CR820 FXE 100E ATATR7013 322-315-00 RES,FXD,METAL FILM:102 OHM,1%,0.2W 57668 RB20 FXE 100E ATATR7013 322-315-00 RES,FXD,METAL FILM:102 OHM,1%,0.2W 57668 RB20 FXE 100E ATATR7013 322-315-00 RES,FXD,METAL FILM:103 OHM,1%,0.2W 57668 RB20 FXE 100E ATATR7013 322-315-00 RES,FXD,METAL FILM:103 OHM,1%,0.2W 57668 CR820 FXE 100E ATATR7013 322-315-00 RES,FXD,METAL FILM:103 OHM,1%,0.2W 57668 CR820 FXE 100E ATATR7013 322-315-00 RES,FXD,METAL FILM:103 OHM,1%,0.2W 57668 CR820 FXE 100E ATATR7013 322-315-00 RES,FXD,METAL FILM:103 OHM,1%,0.2W 57668 CR820 FXE 100E ATATR7013 322-315-00 RES,FXD,METAL FILM: | A1A1R5032 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | ATATR5035 322-3250-00 RES,FXD:METAL FILM:3.92K OHM,1%,0.2W 91637 CCF50-2F3920F ATATR6030 322-3068-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 49E9 ATATR6031 322-3262-00 RES,FXD:FILM:5.23K OHM,1.0.2W 57668 CRB20 FXE 5K23 ATATR6032 322-3251-00 RES,FXD:FILM:4.02K OHM,1%,0.2W 57668 CRB20 FXE 4K02 ATATR6033 322-3139-00 RES,FXD:METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 274E ATATR6040 322-3222-00 RES,FXD:METAL FILM:2.00K OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATATR6041 321-0960-07 RES,FXD:METAL FILM:513 OHM,0.1%,0.125W 01121 ADVISE ATATR6042 322-3175-00 RES,FXD:FILM:513 OHM,0.1%,0.125W 57668 CRB20 FXE 649E ATATR6043 322-3185-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 825E ATATR6044 322-3194-00 RES,FXD:FILM:1.02K OHM,1%,0.2W 57668 CRB20 FXE 825E ATATR6045 322-3213-00 RES,FXD:FILM:1.02K OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATATR6046 322-3213-00 RES,FXD:FILM:1.02K OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATATR6047 322-3223-00 RES,FXD:FILM:1.02K OHM,1%,0.2W 57668 CRB20 FXE 1K62 ATATR7010 322-3114-00 RES,FXD:FILM:1.02K OHM,1%,0.2W 57668 CRB20 FXE 2K05 ATATR7011 322-3097-00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 2K05 ATATR7013 322-3105-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATATR7013 322-3105-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATATR7014 322-3154-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 RB20 FXE 100E ATATR7015 322-3154-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FXE 10E ATATR7015 322-3154-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FXE 10E ATATR7015 322-3154-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FXE 10E ATATR7015 322-3154-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FXE 10E ATATR7016 322-3154-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 10E ATATR7017 322-3105-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 10E ATATR7013 322-3105-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FXE 10E ATATR7014 322-3154-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FXE 10E | A1A1R5033 | 322-3068-00 | | | | RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W | 57668 | CRB20 FXE 49E9 | | ATATR6030 322-3068-00 RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W 57668 CRB20 FXE 49E9 ATATR6031 322-3251-00 RES,FXD;FILM:5.23K OHM,1,0.2W 57668 CRB20 FXE 5k23 ATATR6032 322-3251-00 RES,FXD;FILM:4.02K OHM,1%,0.2W 57668 CRB20 FXE 4k02 ATATR6033 322-3139-00 RES,FXD;FILM:4.02K OHM,1%,0.2W 57668 CRB20 FXE 274E ATATR6040 322-322-00 RES,FXD:METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 274E ATATR6041 321-0960-07 RES,FXD;FILM:513 OHM,0.1%,0.125W 01121 ADVISE ATATR6042 322-3175-00 RES,FXD;FILM:649 OHM,1%,0.2W 57668 CRB20 FXE 649E ATATR6043 322-3185-00 RES,FXD;FILM:649 OHM,1%,0.2W 57668 CRB20 FXE 825E ATATR6044 322-3194-00 RES,FXD;FILM:1.02K OHM,1%,0.2W 91637 CCF50-2G10200F ATATR6045 322-32313-00 RES,FXD;FILM:1.02K OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATATR6046 322-32313-00 RES,FXD;FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 ATATR7010 322-3114-00 RES,FXD;FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 ATATR7011 322-3097-00 RES,FXD;FILM:1.00K OHM,1%,0.2W 57668 CRB20 FXE 2K05 ATATR7013 322-3105-00 RES,FXD;FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 1K00 ATATR7013 322-3105-00 RES,FXD;FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATATR7014 322-3154-00 RES,FXD;METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATATR7015 322-3154-00 RES,FXD;METAL FILM:190 OHM,1%,0.2W 57668 RB20 FXE 100E ATATR7015 322-3154-00 RES,FXD;METAL FILM:190 OHM,1%,0.2W 57668 RB20 FXE 100E ATATR7015 322-3154-00 RES,FXD;METAL FILM:190 OHM,1%,0.2W 57668 RB20 FXB 100E ATATR7015 322-3154-00 RES,FXD;METAL FILM:190 OHM,1%,0.2W 57668 RB20 FXB 100E ATATR7015 322-3154-00 RES,FXD;METAL FILM:190 OHM,1%,0.2W 57668 RB20 FXB 100E ATATR7015 322-3154-00 RES,FXD;METAL FILM:190 OHM,1%,0.2W 57668 RB20 FXB 100E ATATR7015 322-3154-00 RES,FXD;METAL FILM:190 OHM,1%,0.2W 57668 RB20 FXB 100E ATATR7015 322-3154-00 RES,FXD;METAL FILM:190 OHM,1%,0.2W 57668 RB20 FXB 100E ATATR7016 322-3154-00 RES,FXD;FILM:24.3 OHM,1%,0.2W 57668 CRB20 FXE 1665 ATATR7017 321-0038-00 RES,FXD;FILM:24.3 OHM,1%,0.125W 57668 CRB20 FXE 1665 ATATR7017 321-0038-00 RES,FXD;FILM:24.3 OHM,1%,0.125W 57668 CRB20 FXB 100E | A1A1R5034 | 322-3184-00 | | | | RES,FXD,FILM:806 OHM,1%,0.2W | 57668 | CRB20 FXE 806E | | ATA1R6031 322–3262–00 RES,FXD,FILM:5.23K OHM,1,0.2W 57668 CRB20 FXE 5K23 ATA1R6032 322–3251–00 RES,FXD,FILM:4.02K OHM,1%,0.2W 57668 CRB20 FXE 4K02 ATA1R6033 322–3139–00 RES,FXD,METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 274E ATA1R6040 322–3222–00 RES,FXD,METAL FILM:2.00K OHM,1%,0.2W 57668 CRB20 FXE 2800 ATA1R6041 321–0960–07 RES,FXD,FILM:513 OHM,0.1%,0.125W 01121 ADVISE ATA1R6042 322–3175–00 RES,FXD,FILM:649 OHM,1%,0.2W 57668 CRB20 FXE 649E ATA1R6043 322–3185–00 RES,FXD,FILM:649 OHM,1%,0.2W 57668 CRB20 FXE 649E ATA1R6044 322–3194–00 RES,FXD,FILM:1.02K OHM,1%,0.2W 91637 CCF50–2G10200F ATA1R6045 322–3204–00 RES,FXD,FILM:1.30K OHM,1%,0.2W 97668 CRB20 FXE 1K30 ATA1R6046 322–3213–00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 ATA1R6047 322–3223–00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 ATA1R7010 322–3114–00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K02 ATA1R7011 322–3097–00 RES,FXD,METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 100E ATA1R7013 322–3105–00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATA1R7014 322–3105–00 RES,FXD,METAL FILM:101 OHM,1%,0.2W 57668 CRB20 FXE 100E ATA1R7015 322–3154–00 RES,FXD,METAL FILM:121 OHM 1%,0.2W 57668 RB20 FX392E ATA1R7010 322–3154–00 RES,FXD,METAL FILM:123 OHM,1%,0.2W 57668 RB20 FX392E ATA1R7010 322–3154–00 RES,FXD,METAL FILM:123 OHM,1%,0.2W 57668 RB20 FX392E ATA1R7010 322–3105–00 RES,FXD,METAL FILM:123 OHM,1%,0.2W 57668 CRB20 FXE 100E ATA1R7013 322–3154–00 RES,FXD,METAL FILM:123 OHM,1%,0.2W 57668 RB20 FX392E ATA1R7010 322–3105–00 RES,FXD,METAL FILM:123 OHM,1%,0.2W 57668 CRB20 FXE 100E ATA1R7013 322–3154–00 RES,FXD,METAL FILM:123 OHM,1%,0.2W 57668 CRB20 FXE 10E ATA1R7010 322–3154–00 RES,FXD,METAL FILM:123 OHM,1%,0.2W 57668 CRB20 FXE 10E ATA1R7010 322–3154–00 RES,FXD,METAL FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 10E ATA1R7010 322–3154–00 RES,FXD,METAL FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 10E | A1A1R5035 | 322-3250-00 | | | | RES,FXD:METAL FILM:3.92K OHM,1%,0.2W | 91637 | CCF50-2F39200F | | ATA1R6032 322-3251-00 RES,FXD,FILM:4.02K OHM,1%,0.2W 57668 CRB20 FXE 4K02 ATA1R6033 322-3139-00 RES,FXD:METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 274E ATA1R6040 322-3222-00 RES,FXD:METAL FILM:5.20K OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATA1R6041 321-0960-07 RES,FXD:FILM:513 OHM,0.1%,0.125W 01121 ADVISE ATA1R6042 322-3175-00 RES,FXD,FILM:649 OHM,1%,0.2W 57668 CRB20 FXE 649E ATA1R6043 322-3185-00 RES,FXD.METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 825E ATA1R6044 322-3194-00 RES,FXD,FILM:1.02K OHM,1%,0.2W 91637 CCF50-2G10200F ATA1R6045 322-3204-00 RES,FXD,FILM:1.30K OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATA1R6046 322-3213-00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATA1R6047 322-3223-00 RES,FXD,FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 2K05 ATA1R7010 322-3114-00 RES,FXD.METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 2K05 ATA1R7011 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 1K00 ATA1R7012 322-3154-00 RES,FXD.METAL FILM:1010 OHM,1%,0.2W 57668 CRB20 FXE 100E ATA1R7013 322-3154-00 RES,FXD.METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 100E ATA1R7014 322-3154-00 RES,FXD.METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 100E ATA1R7015 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E ATA1R7010 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E ATA1R7015 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7015 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7015 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7015 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7015 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7015 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7020 322-3310-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 16K5 ATA1R7021 321-0038-00 RES,FXD.FILM:343 OHM,1%,0.125W 57668 CRB20 FXE 16K5 | A1A1R6030 | 322-3068-00 | | | | RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W | 57668 | CRB20 FXE 49E9 | | ATA1R6033 322-3139-00 RES,FXD:METAL FILM:274 OHM,1%,0.2W 57668 CRB20 FXE 274E ATA1R6040 322-3222-00 RES,FXD:METAL FILM:2.00K OHM,1%,0.2W 57668 CRB20 FXE 2K00 ATA1R6041 321-0960-07 RES,FXD.FILM:513 OHM,0.1%,0.125W 01121 ADVISE ATA1R6042 322-3175-00 RES,FXD.FILM:649 OHM,1%,0.2W 57668 CRB20 FXE 649E ATA1R6043 322-3185-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 825E ATA1R6044 322-3194-00 RES,FXD.FILM:1.02K OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATA1R6045 322-3204-00 RES,FXD.FILM:1.30K OHM,1%,0.2W 57668 CRB20 FXE 1K30 ATA1R6046 322-3213-00 RES,FXD.FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 ATA1R6047 322-3223-00 RES,FXD.FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 2K05 ATA1R7010 322-3114-00 RES,FXD.METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 2K05 ATA1R7011 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATA1R7012 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E ATA1R7013 322-3154-00 RES,FXD.METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 100E ATA1R7014 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 100E ATA1R7015 322-3154-00
RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7015 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7013 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7013 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7013 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7014 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E ATA1R7015 322-3154-00 RES,FXD.METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 16K5 ATA1R7021 321-0038-00 RES,FXD.FILM:24.3 OHM,1%,0.2W 57668 CRB20 FXE 16K5 ATA1R7021 321-0038-00 RES,FXD.FILM:24.3 OHM,1%,0.2W 57668 CRB20 FXE 16K5 | A1A1R6031 | 322-3262-00 | | | | RES,FXD,FILM:5.23K OHM,1,0.2W | 57668 | CRB20 FXE 5K23 | | A1A1R6040 322–3222-00 RES,FXD;HLM:513 OHM,0.1%,0.125W 01121 ADVISE A1A1R6041 321–0960–07 RES,FXD,FILM:513 OHM,0.1%,0.125W 01121 ADVISE A1A1R6042 322–3175–00 RES,FXD,FILM:649 OHM,1%,0.2W 57668 CRB20 FXE 649E A1A1R6043 322–3185–00 RES,FXD;HLM:1.02K OHM,1%,0.2W 57668 CRB20 FXE 825E A1A1R6044 322–3194–00 RES,FXD,FILM:1.02K OHM,1%,0.2W 91637 CCF50–2G10200F A1A1R6045 322–3204–00 RES,FXD,FILM:1.30K OHM,1%,0.2W 57668 CRB20 FXE 1K30 A1A1R6046 322–3213–00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 A1A1R6047 322–3223–00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 2K05 A1A1R7010 322–3114–00 RES,FXD;METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 2K05 A1A1R7011 322–3097–00 RES,FXD;METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322–3105–00 RES,FXD;METAL FILM:101 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322–3154–00 RES,FXD;METAL FILM:101 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7014 322–3154–00 RES,FXD;METAL FILM:102 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7015 322–3154–00 RES,FXD;METAL FILM:103 OHM,1%,0.2W 57668 CRB20 FXE 102E A1A1R7016 322–3154–00 RES,FXD;METAL FILM:392 OHM,1%,0.2W 57668 RB20 FXE 121E A1A1R7010 322–3154–00 RES,FXD;METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E A1A1R7014 322–3154–00 RES,FXD;METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E A1A1R7015 322–3154–00 RES,FXD;METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7020 322–3310–00 RES,FXD;FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD;FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD;FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 | A1A1R6032 | 322-3251-00 | | | | RES,FXD,FILM:4.02K OHM,1%,0.2W | 57668 | CRB20 FXE 4K02 | | A1A1R6041 321-0960-07 RES,FXD,FILM:513 OHM,0.1%,0.125W 01121 ADVISE A1A1R6042 322-3175-00 RES,FXD,FILM:649 OHM,1%,0.2W 57668 CRB20 FXE 649E A1A1R6043 322-3185-00 RES,FXD,FILM:1.02K OHM,1%,0.2W 91637 CCF50-2G10200F A1A1R6044 322-3194-00 RES,FXD,FILM:1.30K OHM,1%,0.2W 57668 CRB20 FXE 1K30 A1A1R6045 322-3204-00 RES,FXD,FILM:1.30K OHM,1%,0.2W 57668 CRB20 FXE 1K30 A1A1R6046 322-3213-00 RES,FXD,FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 1K62 A1A1R7010 322-3114-00 RES,FXD,FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 2K05 A1A1R7011 322-3097-00 RES,FXD,METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322-3097-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322-3105-00 RES,FXD,METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 100E A1A1R7014 322-3154-00 RES,FXD,METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 121E A1A1R7015 322-3154-00 RES,FXD,METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7016 322-3310-00 RES,FXD,METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7017 322-3310-00 RES,FXD,METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7017 322-3310-00 RES,FXD,METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E A1A1R7014 322-3154-00 RES,FXD,METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E A1A1R7015 322-3310-00 RES,FXD,METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E A1A1R7020 322-3310-00 RES,FXD,METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E A1A1R7021 321-0038-00 RES,FXD,METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321-0038-00 RES,FXD,METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 16K5 | A1A1R6033 | 322-3139-00 | | | | RES,FXD:METAL FILM:274 OHM,1%,0.2W | 57668 | CRB20 FXE 274E | | A1A1R6042 322-3175-00 RES,FXD,FILM:649 OHM,1%,0.2W 57668 CRB20 FXE 649E A1A1R6043 322-3195-00 RES,FXD,FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 825E A1A1R6044 322-3194-00 RES,FXD,FILM:1.02K OHM,1%,0.2W 91637 CCF50-2G10200F A1A1R6045 322-3204-00 RES,FXD,FILM:1.30K OHM,1%,0.2W 57668 CRB20 FXE 1K30 A1A1R6046 322-3213-00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 A1A1R6047 322-3223-00 RES,FXD,FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 2K05 A1A1R7010 322-3114-00 RES,FXD,METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 1K00 A1A1R7011 322-3097-00 RES,FXD;METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322-3097-00 RES,FXD;METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322-3105-00 RES,FXD;METAL FILM:101 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7014 322-3154-00 RES,FXD;METAL FILM:392 OHM,1%,0.2W 57668 RB20 FXE 121E A1A1R7015 322-3154-00 RES,FXD;METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322-3310-00 RES,FXD;METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322-3310-00 RES,FXD;METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7021 321-0038-00 RES,FXD;FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321-0038-00 RES,FXD,FILM:24.3 OHM,1%,0.125W 57668 CRB20 FXE 16K5 | A1A1R6040 | 322-3222-00 | | | | RES,FXD:METAL FILM:2.00K OHM,1%,0.2W | 57668 | CRB20 FXE 2K00 | | A1A1R6043 322-3185-00 RES,FXD:METAL FILM:825 OHM,1%,0.2W 57668 CRB20 FXE 825E A1A1R6044 322-3194-00 RES,FXD,FILM:1.02K OHM,1%,0.2W 91637 CCF50-2G10200F A1A1R6045 322-3213-00 RES,FXD,FILM:1.30K OHM,1%,0.2W 57668 CRB20 FXE 1K30 A1A1R6046 322-3213-00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 A1A1R7010 322-3114-00 RES,FXD,FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 2K05 A1A1R7011 322-3097-00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322-3105-00 RES,FXD:METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 100E A1A1R7014 322-3154-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322-3154-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7016 322-3310-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7017 322-3310-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7019 322-3310-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 121E A1A1R7010 322-3310-00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7021 321-0038-00 RES,FXD.FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321-0038-00 RES,FXD.FILM:24.3 OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321-0038-00 RES,FXD.FILM:24.3 OHM,1%,0.125W 57668 CRB14 FXE 24.3 | A1A1R6041 | 321-0960-07 | | | | RES,FXD,FILM:513 OHM,0.1%,0.125W | 01121 | ADVISE | | A1A1R6044 322–3194–00 RES,FXD,FILM:1.02K OHM,1%,0.2W 91637 CCF50–2G10200F A1A1R6045 322–3204–00 RES,FXD,FILM:1.30K OHM,1%,0.2W 57668 CRB20 FXE 1K30 A1A1R6046 322–3213–00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 A1A1R6047 322–3223–00 RES,FXD,FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 2K05 A1A1R7010 322–3114–00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7011 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322–3105–00 RES,FXD:METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 100E A1A1R7014 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7016 322–3310–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FX 392E A1A1R7020 322–3310–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FX 392E A1A1R7021 321–0038–00 RES,FXD.FILM:16.5K OHM,1%,0.2W 57668 CRB20 FX 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:24.3 OHM,1%,0.125W 57668 CRB14 FXE 24.3 | A1A1R6042 | 322-3175-00 | | | | RES,FXD,FILM:649 OHM,1%,0.2W | 57668 | CRB20 FXE 649E | | A1A1R6045 322–3204–00 RES,FXD,FILM:1.30K OHM,1%,0.2W 57668 CRB20 FXE 1K30 A1A1R6046 322–3213–00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 A1A1R6047 322–3223–00 RES,FXD,FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 2K05 A1A1R7010 322–3114–00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7011 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322–3105–00 RES,FXD:METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 100E A1A1R7014 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7020 322–3310–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 | A1A1R6043 | 322-3185-00 | | | | RES,FXD:METAL FILM:825 OHM,1%,0.2W | 57668 | CRB20 FXE 825E | | A1A1R6046 322–3213–00 RES,FXD,FILM:1.62K OHM,1%,0.2W 57668 CRB20 FXE 1K62 A1A1R6047 322–3223–00 RES,FXD,FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 2K05 A1A1R7010 322–3114–00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20-FX150E A1A1R7011 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322–3105–00 RES,FXD:METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 121E A1A1R7014 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322–33154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7020 322–3310–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 | A1A1R6044 | 322-3194-00 | | | | RES,FXD,FILM:1.02K OHM,1%,0.2W | 91637 | CCF50-2G10200F | | A1A1R7010 322–3223–00 RES,FXD,FILM:2.05K OHM,1%,0.2W 57668 CRB20 FXE 2K05 A1A1R7010 322–3114–00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7011 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322–3105–00
RES,FXD:METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 121E A1A1R7014 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7020 322–3310–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:16.5K OHM,1%,0.125W 57668 CRB20 FXE 16K5 | A1A1R6045 | 322-3204-00 | | | | RES,FXD,FILM:1.30K OHM,1%,0.2W | 57668 | CRB20 FXE 1K30 | | A1A1R7010 322–3114–00 RES,FXD:METAL FILM:150 OHM,1%,0.2W 57668 CRB20-FX150E A1A1R7011 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322–3105–00 RES,FXD:METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 121E A1A1R7014 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7020 322–3310–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 | A1A1R6046 | 322-3213-00 | | | | RES,FXD,FILM:1.62K OHM,1%,0.2W | 57668 | CRB20 FXE 1K62 | | A1A1R7011 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7012 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322–3105–00 RES,FXDMETAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 121E A1A1R7014 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7020 322–3310–00 RES,FXD;FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:24.3 OHM,1%,0.125W 57668 CRB14 FXE 24.3 | A1A1R6047 | 322-3223-00 | | | | RES,FXD,FILM:2.05K OHM,1%,0.2W | 57668 | CRB20 FXE 2K05 | | A1A1R7012 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A1A1R7013 322–3105–00 RES,FXD:METAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 121E A1A1R7014 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7020 322–3310–00 RES,FXD:FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:24.3 OHM,1%,0.125W 57668 CRB14 FXE 24.3 | A1A1R7010 | 322-3114-00 | | | | RES,FXD:METAL FILM:150 OHM,1%,0.2W | 57668 | CRB20-FX150E | | A1A1R7013 322–3105–00 RES,FXDMETAL FILM:121 OHM 1%,0.2W 57668 CRB20 FXE 121E A1A1R7014 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7020 322–3310–00 RES,FXD;FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:24.3 OHM,1%,0.125W 57668 CRB14 FXE 24.3 | A1A1R7011 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | A1A1R7014 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7015 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7020 322–3310–00 RES,FXD,FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:24.3 OHM,1%,0.125W 57668 CRB14 FXE 24.3 | A1A1R7012 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | A1A1R7015 322–3154–00 RES,FXD:METAL FILM:392 OHM,1%,0.2W 57668 RB20 FX392E A1A1R7020 322–3310–00 RES,FXD,FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:24.3 OHM,1%,0.125W 57668 CRB14 FXE 24.3 | A1A1R7013 | 322-3105-00 | | | | RES,FXDMETAL FILM:121 OHM 1%,0.2W | 57668 | CRB20 FXE 121E | | A1A1R7020 322–3310–00 RES,FXD,FILM:16.5K OHM,1%,0.2W 57668 CRB20 FXE 16K5 A1A1R7021 321–0038–00 RES,FXD,FILM:24.3 OHM,1%,0.125W 57668 CRB14 FXE 24.3 | A1A1R7014 | 322-3154-00 | | | | RES,FXD:METAL FILM:392 OHM,1%,0.2W | 57668 | RB20 FX392E | | A1A1R7021 321–0038–00 RES,FXD,FILM:24.3 OHM,1%,0.125W 57668 CRB14 FXE 24.3 | A1A1R7015 | 322-3154-00 | | | | RES,FXD:METAL FILM:392 OHM,1%,0.2W | 57668 | RB20 FX392E | | | A1A1R7020 | 322-3310-00 | | | | RES,FXD,FILM:16.5K OHM,1%,0.2W | 57668 | CRB20 FXE 16K5 | | A1A1R7022 322–3306–00 RES,FXD:METAL FILM:15.0K OHM,1%,0.2W 57668 CRB20 FXE 15K0 | A1A1R7021 | 321-0038-00 | | | | RES,FXD,FILM:24.3 OHM,1%,0.125W | 57668 | CRB14 FXE 24.3 | | | A1A1R7022 | 322-3306-00 | | | | RES,FXD:METAL FILM:15.0K OHM,1%,0.2W | 57668 | CRB20 FXE 15K0 | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|---------------------------------------|--------------|---------------------| | A1A1R7023 | 322-3097-00 | | | ÷ | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | A1A1R7024 | 322-3193-00 | | | | RES,FXD:METAL FILM:1K OHM,1%,0.2W | 57668 | CRB20 FXE 1K00 | | A1A1R7025 | 322-3193-00 | | | | RES,FXD:METAL FILM:1K OHM,1%,0.2W | 57668 | CRB20 FXE 1K00 | | A1A1R7026 | 322-3193-00 | | | | RES,FXD:METAL FILM:1K OHM,1%,0.2W | 57668 | CRB20 FXE 1K00 | | A1A1R7027 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | A1A1R7028 | 322-3068-00 | | | | RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W | 57668 | CRB20 FXE 49E9 | | A1A1R7029 | 322-3342-00 | | | | RES,FXD,FILM:35.7K OHM,1%,0.2W | 57668 | CRB20 FXE 35K7 | | A1A1R7030 | 322-3222-00 | | | | RES,FXD:METAL FILM:2.00K OHM,1%,0.2W | 57668 | CRB20 FXE 2K00 | | A1A1R7031 | 322-3306-00 | | | | RES,FXD:METAL FILM:15.0K OHM,1%,0.2W | 57668 | CRB20 FXE 15K0 | | A1A1R7032 | 321-0720-00 | | | | RES,FXD,FILM:60K OHM,1%,0.125W | 91637 | CMF55-116-G-60001FT | | A1A1R7033 | 322-3269-00 | | | | RES,FXD,FILM:6.19K OHM,1%,0.2W | 91637 | CCF501G61900F | | A1A1R7034 | 322-3068-00 | | | | RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W | 57668 | CRB20 FXE 49E9 | | A1A1R7040 | 322-3001-00 | | | | RES,FXD:METAL FILM:10 OHM,1%,0.2W | 57668 | CRB20 FXE10E0 | | A1A1R8010 | 321-0038-00 | | | | RES,FXD,FILM:24.3 OHM,1%,0.125W | 57668 | CRB14 FXE 24.3 | | A1A1R8011 | 321-0312-00 | | | | RES,FXD,FILM:17.4K OHM,1%,0.125W | 07716 | CEAD17401F | | A1A1R8012 | 321-0631-00 | | | | RES,FXD,FILM:12.5K OHM,1%,0.125W | 07716 | CEA T0 1% 12.5K | | A1A1R8013 | 322-3126-00 | | | | RES,FXD,FILM:200 OHM,1%,0.2W | 91637 | CCF501G200R0F | | A1A1R8014 | 322-3068-00 | | | | RES,FXD:METAL FILM:49.9 OHM,0.1%,0.2W | 57668 | CRB20 FXE 49E9 | | A1A1R8020 | 322-3193-00 | | | | RES,FXD:METAL FILM:1K OHM,1%,0.2W | 57668 | CRB20 FXE 1K00 | | A1A1R8021 | 322-3325-00 | | | | RES,FXD,FILM:23.7K OHM,1%,0.2W | 57668 | CRB20 FXE 23K7 | | A1A1R8022 | 322-3283-00 | | | | RES,FXD,FILM:8.66K OHM,1%,0.2W | 57668 | CRB20 FXE 8K66 | | A1A1R8023 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A1A1R8024 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | A1A1R8025 | 321-0174-00 | | | | RES,FXD,FILM:634 OHM,1%,0.125W | 19701 | 5043ED634ROF | | A1A1R8026 | 322-3306-00 | | | | RES,FXD:METAL FILM:15.0K OHM,1%,0.2W | 57668 | CRB20 FXE 15K0 | | A1A1R8027 | 322-3306-00 | | | | RES,FXD:METAL FILM:15.0K OHM,1%,0.2W | 57668 | CRB20 FXE 15K0 | | A1A1R8028 | 322-3306-00 | | | | RES,FXD:METAL FILM:15.0K OHM,1%,0.2W | 57668 | CRB20 FXE 15K0 | | A1A1R8040 | 321-0782-03 | | | | RES,FXD,FILM:40 OHM,0.25%,0.125W | 03888 | PME5540 OHM 0.25 | | A1A1R8041 | 322-3128-00 | | | | RES,FXD,FILM:210 OHM,1%,0.2W | 57668 | CRB20 FXE210E | | A1A1R8042 | 322-3205-00 | | | | RES,FXD,FILM:1.33K OHM,1%,0.2W | 57668 | CRB20 FXE 1K33 | | A1A1R8043 | 321-0620-00 | | | | RES,FXD,FILM:8.45K OHM,0.25%,0.125W | 91637 | CMF55-116-D-84500CT | | A1A1R8044 | 322-3318-00 | | | | RES,FXD:METAL FILM:20.0K OHM,1%,0.2W | 57668 | CRB20 FXE 20K0 | | A1A1R8045 | 322-3318-00 | | | | RES,FXD:METAL FILM:20.0K OHM,1%,0.2W | 57668 | CRB20 FXE 20K0 | | A1A1R8046 | 322-3318-00 | | | | RES,FXD:METAL FILM:20.0K OHM,1%,0.2W | 57668 | CRB20 FXE 20K0 | | A1A1R8047 | 322-3289-00 | | | | RES,FXD:METAL FILM:10.0K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A1A1R9010 | 322-3114-00 | | | | RES,FXD:METAL FILM:150 OHM,1%,0.2W | 57668 | CRB20-FX150E | | A1A1R9011 | 322-3258-00 | | | | RES,FXD:METAL FILM:4.75K OHM,1%,0.2W | 56845 | CCF50-2-G4751FT | | | | | | | • • | | | | ATATEPO20 321-0038-00 RES.FXD.FILM.243.OHM.1%.0.125W 57668 CRB14 FXE 24.3 ATATEPO21 322-3097-00 RES.FXD.METAL.FILM.100 OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO22 322-3097-00 RES.FXD.METAL.FILM.100 OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO23 322-3097-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO23 322-3097-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO25 322-306-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO26 322-3216-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 91637 CCF50-2726700F ATATEPO27 322-3126-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 91637 CCF50-2726700F ATATEPO23 322-3331-00 RES.FXD.METAL.FILM.200LW.1%.0.2W 91637 CCF50-120000T ATATEPO23 322-3331-00 RES.FXD.METAL.FILM.201K.0HM.1%.0.2W 57668 CRB20 FXE T1K5 ATATEPO33 311-0633-00 RES.FXD.METAL.FILM.27.4K OHM.1%.0.2W 57668 CRB20 FXE T1K5 ATATEPO34 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L
10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |--|----------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|------------------| | ATATERPO15 322–3342–00 | A1A1R9013 | 322-3306-00 | | | | RES,FXD:METAL FILM:15.0K OHM,1%,0.2W | 57668 | CRB20 FXE 15K0 | | ATATEPO20 321-0038-00 RES.FXD.FILM.243.OHM.1%.0.125W 57668 CRB14 FXE 24.3 ATATEPO21 322-3097-00 RES.FXD.METAL.FILM.100 OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO22 322-3097-00 RES.FXD.METAL.FILM.100 OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO23 322-3097-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO23 322-3097-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO25 322-306-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 57668 CRB20 FXE 100E ATATEPO26 322-3216-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 91637 CCF50-2726700F ATATEPO27 322-3126-00 RES.FXD.METAL.FILM.200K OHM.1%.0.2W 91637 CCF50-2726700F ATATEPO23 322-3331-00 RES.FXD.METAL.FILM.200LW.1%.0.2W 91637 CCF50-120000T ATATEPO23 322-3331-00 RES.FXD.METAL.FILM.201K.0HM.1%.0.2W 57668 CRB20 FXE T1K5 ATATEPO33 311-0633-00 RES.FXD.METAL.FILM.27.4K OHM.1%.0.2W 57668 CRB20 FXE T1K5 ATATEPO34 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST POINT-0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATEPO24 214-0579-02 B010100 B023052 TERM.TEST | A1A1R9014 | 322-3310-00 | | | | RES,FXD,FILM:16.5K OHM,1%,0.2W | 57668 | CRB20 FXE 16K5 | | ATATEPO 22 322-397-00 | A1A1R9015 | 322-3342-00 | | | | RES,FXD,FILM:35.7K OHM,1%,0.2W | 57668 | CRB20 FXE 35K7 | | ATATR9022 322-3280-00 RES.FXD.FILM8.06K OHM.1%.0.2W 57668 CRB20 FXE 2K00 ATATR9023 322-3097-00 RES.FXD.METAL FILM:100 OHM.1%.0.2W 57668 CRB20 FXE 2K00 ATATR9024 322-3222-00 RES.FXD.METAL FILM:100 KO HM.1%.0.2W 57668 CRB20 FXE 2K00 RES.FXD.METAL FILM:100 KO HM.1%.0.2W 57668 CRB20 FXE 2K00 ATATR9025 322-3234-00 RES.FXD.METAL FILM:200 KO HM.1%.0.2W 91637 CCF50-2726700F ATATR9027 322-3126-00 RES.FXD.FILM:200 OHM.1%.0.2W 91637 CCF50-1726700F ATATR9030 322-3231-00 RES.FXD.FILM:200 OHM.1%.0.2W 97637 CCF501G200R0F ATATR9031 322-3331-00 RES.FXD.FILM:21.5K OHM.1%.0.2W 57668 CRB20 FXE 71K5 ATATR9031 322-3331-00 RES.FXD.FILM:21.5K OHM.1%.0.2W 57668 CRB20 FXE 71K5 ATATR9031 322-3331-00 RES.FXD.FILM:21.5K OHM.1%.0.2W 57668 CRB20 FXE 71K5 ATATR9032 311-0633-00 RES.FXD.FILM:21.5K OHM.1%.0.2W 57668 CRB20 FXE 71K5 ATATR9031 322-3331-00 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATTP904 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATATTP904 21 | A1A1R9020 | 321-0038-00 | | | | RES,FXD,FILM:24.3 OHM,1%,0.125W | 57668 | CRB14 FXE 24.3 | | ATATR9023 322-3097-00 RES.FXD.METAL FILM:100 OHM.1%,0.2W 57668 CRB20 FXE 100E ATATR9024 322-3222-00 RES.FXD.METAL FILM:105 OHM.1%,0.2W 57668 CRB20 FXE 2K00 ATATR9025 322-3324-00 RES.FXD.METAL FILM:150 KO HM.1%,0.2W 57668 CRB20 FXE 15K0 ATATR9026 322-3324-00 RES.FXD.HILM.2.00K OHM.1%,0.2W 91637 CCF50-12F2070F ATATR9027 322-3126-00 RES.FXD.FILM.2.0 OHM.1%,0.2W 91637 CCF50-12F2070F ATATR9031 322-3371-00 RES.FXD.FILM.2.0 OHM.1%,0.2W 91637 CCF50-12F2070F ATATR9031 322-3331-00 RES.FXD.HILM.21 KO HM.1%,0.2W 57668 CRB20 FXE 71K5 ATATR9031 322-3331-00 RES.FXD.METAL FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 71K5 ATATR9032 311-0633-00 RES.FXD.METAL FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 71K5 ATATR9032 311-0633-00 RES.FXD.METAL FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 71K5 ATATR9032 311-0633-00 RES.FXD.METAL FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATR9032 311-0633-00 RES.FXD.METAL FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATR9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATATTP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID, | A1A1R9021 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | ATAITP904 322-3222-00 ATAITR9025 322-3306-00 ATAITR9026 322-3236-00 ATAITR9026 322-3234-00 ATAITR9027 322-3126-00 ATAITR9027 322-3126-00 ATAITR9027 322-3126-00 ATAITR9027 322-3126-00 ATAITR9027 322-3100 RES,FXD,FILM-267X OHM,1%,0.2W ATAITR9027 322-3371-00 ATAITR9028 311-0633-00 ATAITR9031 322-3331-00 ATAITR9032 311-0633-00 311-00 ATAITR9033 311-00 ATAITR9033 311-00 ATAITR9033 311-00 ATAITR9033 311-00 ATAITR9033 311-00 ATAITR9033 311-00 AT | A1A1R9022 | 322-3280-00 | | | | RES,FXD,FILM:8.06K OHM,1%,0.2W | 57668 | CRB20 FXE 8K06 | | ATAITR9025 322-3306-00 ATAITR9026 322-3234-00 ATAITR9027 322-3126-00 ATAITR9027 322-3126-00 ATAITR9030 322-3371-00 ATAITR9030 322-3371-00 ATAITR9031 322-3331-00 ATAITR9032 311-0633-00 RES,FXD,FILM:26,FX OHM,1%,0.2W P1637 CCF501G200R0F ATAITR9031 322-3331-00 RES,FXD,FILM:21,FX OHM,1%,0.2W P1637 CCF501G200R0F ATAITR9032 311-0633-00 RES,FXD,FILM:20,FM,1%,0.2W ATAITR9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 | A1A1R9023 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 |
CRB20 FXE 100E | | ATATEPON 322-3234-00 RES.FXD.FILM.267K OHM.1%,0.2W 91637 CCF50-2F26700F ATATEPON 322-3126-00 RES.FXD.FILM.200 OHM.1%,0.2W 91637 CCF501G200R0F ATATEPON 322-3371-00 RES.FXD.FILM.210 OHM.1%,0.2W 57668 CRB20 FXE 71K5 ATATEPON 322-3331-00 RES.FXD.FILM.210 OHM.1%,0.2W 57668 CRB20 FXE 71K5 ATATEPON 322-3331-00 RES.FXD.FILM.21 FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATEPON 322-3331-00 RES.FXD.FILM.21 FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATEPON 322-3331-00 RES.FXD.FILM.21 FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATEPON 322-3311-0633-00 RES.FXD.FILM.21 FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATEPON 322-3311-0633-00 RES.FXD.FILM.21 FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATEPON 322-3311-0633-00 RES.FXD.FILM.21 FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATEPON 322-3311-0633-00 RES.FXD.FILM.21 FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATEPON 322-3311-0633-00 RES.FXD.FILM.21 FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATEPON 322-3311-0633-00 RES.FXD.FILM.21 FILM.27 4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATATEPON 322-41-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 322-41-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 321-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 321-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 321-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 321-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 321-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 321-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 321-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 321-0579-02 B010100 B023052 TERM.TEST POINT.0.052 ID0.169 H.0.465 L 10392 7-16150-8 ATATEPON 321-0579-02 B010100 B023052 TERM.TEST | A1A1R9024 | 322-3222-00 | | | | RES,FXD:METAL FILM:2.00K OHM,1%,0.2W | 57668 | CRB20 FXE 2K00 | | ATAITR9027 322-3126-00 RES.FXD.FILM:200 OHM.1%,0.2W 91637 CCF501G200R0F ATAITR9030 322-3371-00 RES.FXD.FILM:201 OHM.1%,0.2W 57668 CRB20 FXE 71K5 ATAITR9031 322-3331-00 RES.FXD.METAL FILM:27.4K OHM.1%,0.2W 57668 CRB20 FXE 71K5 ATAITR9032 311-0633-00 RES.FXD.METAL FILM:27.4K OHM.1%,0.2W 57668 CRB20 FXE 27K4 ATAITR9032 311-0633-00 RES.FXD.METAL FILM:27.4K OHM.1%,0.5W CERMET 32997 3329H-L58-502 ATAITTP1040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP2040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP3040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP3041 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP4040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP4040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP4040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP4040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP9040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP9040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP9040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP9040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP9040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP9040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP9040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP9040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 ATAITTP9040 214-0579-02 B010100 B023052 TERM.TEST POINT:0.052 ID.0.169 H.0.465 L 10392 7-16150-8 AT | A1A1R9025 | 322-3306-00 | | | | RES,FXD:METAL FILM:15.0K OHM,1%,0.2W | 57668 | CRB20 FXE 15K0 | | ATAITP9030 322–3371-00 RES.FXD,FILM:71.5K OHM,1%,0.2W 57668 CRB20 FXE 71K5 ATAITP9031 322–3331-00 RES.FXD:METAL FILM:27.4K OHM,1%,0.2W 57668 CRB20 FXE 27K4 ATAITP9032 311-0633-00 RES.FXD:METAL FILM:27.4K OHM,1%,0.2W 57668 CRB20 FXE 27K4 ATAITP9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP3040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP3041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 114-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 114-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 1156-2763-00 IC,DIGITAL:HCMOS,MISC:NONVOLATILE CONTROL ORDED LM393P IC | A1A1R9026 | 322-3234-00 | | | | RES,FXD,FILM:2.67K OHM,1%,0.2W | 91637 | CCF50-2F26700F | | ATAITP001 214-0579-02 B01010 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP1040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP1041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP1040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP3040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0. | A1A1R9027 | 322-3126-00 | | | | RES,FXD,FILM:200 OHM,1%,0.2W | 91637 | CCF501G200R0F | | ATATR9032 311–0633–00 | A1A1R9030 | 322-3371-00 | | | | RES,FXD,FILM:71.5K OHM,1%,0.2W | 57668 | CRB20 FXE 71K5 | | ATAITP1040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP2040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP3040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP3041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4020 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4020 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02
B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TE | A1A1R9031 | 322-3331-00 | | | | RES,FXD:METAL FILM:27.4K OHM,1%,0.2W | 57668 | CRB20 FXE 27K4 | | ATAITP1041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP2040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP3040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP3041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4020 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4021 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9041 2156-2760-00 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9041 2156-2760-00 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATAITP9041 2156-2760-00 B010100 B023052 TERM,TEST POINT: 0.052 I | A1A1R9032 | 311-0633-00 | | | | RES,VAR,NONWW:TRMR,5K OHM,0.5W CERMET | 32997 | 3329H-L58-502 | | ATAITP2040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP3040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP3041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4020 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4021 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4041 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITH40101 156-2763-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K 04713 MC74HC113N ATAIU1011 156-2473-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K 04713 MC74HC113N ATAIU1020 156-2473-00 IC,DIGITAL:HCMOS,GATES:8-INPUT NAND 04704 TC5564PL-20 ATAIU1021 156-2587-00 IC,DIGITAL:HCMOS,GATES:8-INPUT NAND 27014 MM74HC30N | A1A1TP1040 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | ATAITP3040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP3041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4020 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4021 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7011 214-0579-02 B010100 | A1A1TP1041 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | ATAITP3041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4020 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP6010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 | A1A1TP2040 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | ATA1TP4020 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP4021 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP6010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP9010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP9040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052
ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 ATA1U1010 156-2763-00 IC, DIGITAL: CMOS,MISC; NONVOLATILE CONTROL 0B0A9 DS1210 ATA1U1011 156-2763-00 IC, DIGITAL: HCMOS, FLIP FLOP: DUAL J-K 04713 MC74HC113N ATA1U1021 156-2473-00 IC, MEMORY: CMOS, SRAM; BK X 8, 200NS, 200NA 0JR04 TC5564PL-20 ATA1U1022 156-2583-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N ATA1U1023 156-2587-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N ATA1U1020 156-2587-00 IC, DIGITAL: HCMOS, GATES: 8-INPUT NAND 27014 MM74HC30N | A1A1TP3040 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1TP4021 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP4040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP6010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1U1010 156-2763-00 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1U1010 156-2763-00 IC, DIGITAL: CMOS, MISC: NONVOLATILE CONTROL 0B0A9 DS1210 A1A1U1011 156-2763-00 IC, DIGITAL: CMOS, MISC: NONVOLATILE CONTROL 0B0A9 DS1210 A1A1U1020 156-2473-00 IC, DIGITAL: HCMOS, FLIP FLOP; DUAL J-K 04713 MC74HC113N A1A1U1021 156-2473-00 IC, MEMORY: CMOS, SRAM: 8K X 8, 200NS, 200NA 0JR04 TC5564PL-20 A1A1U1021 156-2583-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-2587-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-2587-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N A1A1U1030 156-3059-00 IC, DIGITAL: HCMOS, GATES; 8-INPUT NAND 27014 MM74HC30N | A1A1TP3041 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | ATAITP4040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP6010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2760-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2760-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2763-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 ATAITU1010 156-2760-00 B010100 | A1A1TP4020 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1TP6010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1TP7010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1TP9010 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1TP9011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1TP9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1U1010 156-2760-00 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1U1010 156-2760-00 IC,DIGITAL:CMOS,MISC;NONVOLATILE CONTROL 0B0A9 DS1210 A1A1U1011 156-2763-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K 04713 MC74HC113N A1A1U1010 156-2473-00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL-20 A1A1U1021 156-2473-00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL-20 A1A1U1022 156-2583-00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-2587-00 IC,DIGITAL:HCMOS,GATES;8-INPUT NAND 27014 MM74HC30N | A1A1TP4021 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1TP7010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1U1010 156-2760-00 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1U1011 156-2763-00 IC, DIGITAL: CMOS, MISC; NONVOLATILE CONTROL 0B0A9 DS1210 A1A1U1012 156-1225-00 IC, DIGITAL: CMOS, FLIP FLOP; DUAL J-K 04713 MC74HC113N A1A1U1020 156-2473-00 IC, MEMORY: CMOS, SRAM;8K X 8,200NS, 200NA 0JR04 TC5564PL-20 A1A1U1021 156-2583-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-2587-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-3059-00 IC, DIGITAL: HCMOS, GATES;8-INPUT NAND 27014 MM74HC30N | A1A1TP4040 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1TP9010 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9011 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9040 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L 10392 7-16150-8 A1A1U1010 156-2760-00 IC, DIGITAL: CMOS, MISC; NONVOLATILE CONTROL 0B0A9 DS1210 A1A1U1011 156-2763-00 IC, DIGITAL: HCMOS, FLIP FLOP; DUAL J-K 04713 MC74HC113N A1A1U1020 156-2473-00 IC, MEMORY: CMOS, SRAM; 8K X 8, 200NS, 200NA 0JR04 TC5564PL-20 A1A1U1021 156-2583-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-2587-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-3059-00 IC, DIGITAL: HCMOS, GATES; 8-INPUT NAND 27014 MM74HC30N | A1A1TP6010 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1TP9011 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1TP9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1U1010 156-2760-00 IC,DIGITAL:CMOS,MISC;NONVOLATILE CONTROL 0B0A9 DS1210 A1A1U1011 156-2763-00 IC,DIGITAL:CMOS,FLIP FLOP;DUAL J-K 04713 MC74HC113N A1A1U1020 156-2473-00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL-20 A1A1U1021 156-2583-00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-2587-00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1030 156-3059-00 IC,DIGITAL:HCMOS,GATES;8-INPUT NAND 27014 MM74HC30N | A1A1TP7010 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1TP9040 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1U1010 156-2760-00 IC,DIGITAL:CMOS,MISC;NONVOLATILE CONTROL 0B0A9 DS1210 A1A1U1011 156-2763-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K 04713 MC74HC113N A1A1U1012 156-1225-00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL-20 A1A1U1021 156-2473-00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL-20 A1A1U1021 156-2583-00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-2587-00 IC,DIGITAL:HCMOS,GATES;8-INPUT NAND 27014 MM74HC30N | A1A1TP9010 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1TP9041 214-0579-02 B010100 B023052 TERM,TEST POINT:0.052 ID,0.169 H,0.465 L 10392 7-16150-8 A1A1U1010 156-2760-00 IC,DIGITAL:CMOS,MISC:NONVOLATILE CONTROL 0B0A9 DS1210 A1A1U1011
156-2763-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K 04713 MC74HC113N A1A1U1012 156-1225-00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL-20 A1A1U1021 156-2473-00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL-20 A1A1U1022 156-2583-00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-2587-00 IC,DIGITAL:HCMOS,DEMUX/DECODER 0JR04 TMPZ84C00AP-6 A1A1U1030 156-3059-00 IC,DIGITAL:HCMOS,GATES;8-INPUT NAND 27014 MM74HC30N | A1A1TP9011 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1U1010 156–2760–00 IC,DIGITAL:CMOS,MISC:NONVOLATILE CONTROL 0B0A9 DS1210 A1A1U1011 156–2763–00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J–K 04713 MC74HC113N A1A1U1012 156–1225–00 IC,LINEAR:BIPOLAR,COMPARATOR;DUAL 01295 LM393P A1A1U1020 156–2473–00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL–20 A1A1U1021 156–2473–00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL–20 A1A1U1022 156–2583–00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156–2587–00 IC,DGTL:CPU 6MHZ,Z–80 DIP40 0JR04 TMPZ84C00AP–6 A1A1U1030 156–3059–00 IC,DIGITAL:HCMOS,GATES;8–INPUT NAND 27014 MM74HC30N | A1A1TP9040 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1U1011 156–2763–00 IC,DIGITAL:HCMOS,FLIP FLOP:DUAL J–K 04713 MC74HC113N A1A1U1012 156–1225–00 IC,LINEAR:BIPOLAR,COMPARATOR;DUAL 01295 LM393P A1A1U1020 156–2473–00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL–20 A1A1U1021 156–2473–00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL–20 A1A1U1022 156–2583–00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156–2587–00 IC,DGTL:CPU 6MHZ,Z–80 DIP40 0JR04 TMPZ84C00AP–6 A1A1U1030 156–3059–00 IC,DIGITAL:HCMOS,GATES;8–INPUT NAND 27014 MM74HC30N | A1A1TP9041 | 214-0579-02 | B010100 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A1A1U1012 156–1225–00 IC,LINEAR:BIPOLAR,COMPARATOR;DUAL 01295 LM393P A1A1U1020 156–2473–00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL–20 A1A1U1021 156–2473–00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL–20 A1A1U1022 156–2583–00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156–2587–00 IC,DGTL:CPU 6MHZ,Z–80 DIP40 0JR04 TMPZ84C00AP–6 A1A1U1030 156–3059–00 IC,DIGITAL:HCMOS,GATES;8–INPUT NAND 27014 MM74HC30N | A1A1U1010 | 156-2760-00 | | | | IC,DIGITAL:CMOS,MISC;NONVOLATILE CONTROL | 0B0A9 | DS1210 | | A1A1U1020 156–2473–00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL–20 A1A1U1021 156–2473–00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL–20 A1A1U1022 156–2583–00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156–2587–00 IC,DGTL:CPU 6MHZ,Z–80 DIP40 0JR04 TMPZ84C00AP–6 A1A1U1030 156–3059–00 IC,DIGITAL:HCMOS,GATES;8–INPUT NAND 27014 MM74HC30N | A1A1U1011 | 156-2763-00 | | | | IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K | 04713 | MC74HC113N | | A1A1U1021 156-2473-00 IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA 0JR04 TC5564PL-20 A1A1U1022 156-2583-00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156-2587-00 IC,DGTL:CPU 6MHZ,Z-80 DIP40 0JR04 TMPZ84C00AP-6 A1A1U1030 156-3059-00 IC,DIGITAL:HCMOS,GATES;8-INPUT NAND 27014 MM74HC30N | A1A1U1012 | 156-1225-00 | | | | IC,LINEAR:BIPOLAR,COMPARATOR;DUAL | 01295 | LM393P | | A1A1U1022 156–2583–00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U1023 156–2587–00 IC,DGTL:CPU 6MHZ,Z–80 DIP40 0JR04 TMPZ84C00AP-6 A1A1U1030 156–3059–00 IC,DIGITAL:HCMOS,GATES;8–INPUT NAND 27014 MM74HC30N | A1A1U1020 | 156-2473-00 | | | | IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA | 0JR04 | TC5564PL-20 | | A1A1U1023 156–2587–00 IC,DGTL:CPU 6MHZ,Z=80 DIP40 0JR04 TMPZ84C00AP-6 A1A1U1030 156–3059–00 IC,DIGITAL:HCMOS,GATES;8–INPUT NAND 27014 MM74HC30N | A1A1U1021 | 156-2473-00 | | | | IC,MEMORY:CMOS,SRAM;8K X 8,200NS,200NA | 0JR04 | TC5564PL-20 | | A1A1U1030 156–3059–00 IC,DIGITAL:HCMOS,GATES;8–INPUT NAND 27014 MM74HC30N | A1A1U1022 | 156-2583-00 | | | | IC,DIGITAL:HCMOS,DEMUX/DECODER | 01295 | SN74HC138N | | | A1A1U1023 | 156-2587-00 | | | | IC,DGTL:CPU 6MHZ,Z-80 DIP40 | 0JR04 | TMPZ84C00AP-6 | | A1A1U1031 156–2392–00 IC,DIGITAL:HCMOS,GATE;HEX INV, SCHMITT TRIG 04713 MC74HC14N | A1A1U1030 | 156-3059-00 | | | | IC,DIGITAL:HCMOS,GATES;8-INPUT NAND | 27014 | MM74HC30N | | | A1A1U1031 | 156-2392-00 | | | | IC,DIGITAL:HCMOS,GATE;HEX INV, SCHMITT TRIG | 04713 | MC74HC14N | | ATATU10143 156-2463-00 IC,DITTAL-HCMOS,GATE,QUAD 2-INPUT OR 01295 SN74HC32N ATATU2011 156-2415-00 IC,DIGITAL-HCMOS,TRANSCEIVER-OCTAL,NONINV 04713 MC74HC245AN ATATU2012 156-3110-00 IC,DIGITAL-HCMOS,BUFFER,NONINV 0CTAL 27014 MM74HC244N 136-0755-00 SOCKET,DIPP-CB2,8P POS, 2 X 14,0.1 X 26,6 TTR 09922 DILB28P-108 ATATU2021 156-2583-00 IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC138N ATATU2022 156-2583-00 IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC138N ATATU2023 156-2263-00 IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC138N ATATU2023 156-2583-00 IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC138N ATATU2024 156-2583-00 IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC138N ATATU2025 156-2763-00 IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC138N SN74HC131N IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC131N IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC131N IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC131N IC,DIGITAL-HCMOS,DEMUX/DECODER 01295 SN74HC131N IC,DIGITAL-HCMOS,DEM | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |--|----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|------------------| | ATATUTO40 156-3058-00 IC_DIGITAL+ICMOS_GATE:DUAL 4-INPUT NAND 01295 SN74HC20N ATATUTO41 156-2009-00 IC_DIGITAL+ICMOS_GATE:TUPEL 3-INPUT NOR 04713 MC74HC27N ATATUTO42 156-3180-00 IC_DIGITAL+ICMOS_GATE:TRIPLE 3-INPUT NOR 04713 MC74HC27N ATATUTO41 156-2445-00 IC_DIGITAL+ICMOS_GATE:TRIPLE 3-INPUT NOR 04713 MC74HC245AN ATATUTO41 156-2415-00 IC_DIGITAL+ICMOS_BATE_GUIAD 2-INPUT NOR 04713 MC74HC245AN ATATUTO41 156-3110-00 IC_DIGITAL+ICMOS_BUFFER:NONINV 04714 MM74HC244N 136-0755-00 SOCKET_DIP-PGB_28 PGS_Z X 14_0.1 X.0.6 CTR 09922 DILB28P-108 ATATUTO21 156-2583-00 IC_DIGITAL+ICMOS_DEMUX/DECODER 01295 SN74HC138N ATATUTO22 156-2763-00 IC_DIGITAL+ICMOS_DEMUX/DECODER 01295 SN74HC138N ATATUTO23 156-2763-00 IC_DIGITAL-ICMOS_DEMUX/DECODER 01295 SN74HC138N ATATUTO23 156-2763-00 IC_DIGITAL-ICMO | A1A1U1032 | 156–1994–00 | | | ; | IC,DIGITAL:CMOS,BUFFER/DRIVER;OCTAL INV | 27014 | MM74C240 | | AIA1U1041 156-2009-00 IC_DIGITALHCMOS_FLIP_FLOP_DUAL_D-TYP 01295 SN74HC74N AIA1U1042 156-3180-00 IC_DIGITALHCMOS_GATE_TRIPE_3-INPUT NOR 04713 MC74HC27N AIA1U1043 156-2463-00 IC_DIGITALHCMOS_GATE_TUDE_3-INPUT NOR 04713 MC74HC27N AIA1U2011 156-2415-00 IC_DIGITALHCMOS_GATE_OUAD_2-INPUT OR 04713 MC74HC245AN AIA1U2012 156-3110-00 IC_DIGITALHCMOS_BUFFERNONINV_OCTAL 27014 MM74HC244N 136-0755-00 SOCKET_DIBP_CB_28_DOS_Z_X_14_D_1_X_0_6_CTIR 09922 DIBL282P_108 AIA1U2021 156-2583-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2022 156-2583-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2023 156-2583-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2024 156-2583-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2025 156-2763-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2025 156-2763-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2026 156-2839-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2027 156-2763-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2028 156-2763-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2020 156-2763-00 IC_DIGITALHCMOS_DEMUX/DECODER 01295 SN74HC138N AIA1U2031 119-2736-00 IC_DIGITALHCMOS_FLIP_FLOP_DUAL_J_K 04713 MC74HC113N AIA1U2031 119-2736-00 IC_DIGITALHCMOS_FLIP_FLOP_DUAL_J_K 04713 MC74HC113N AIA1U2031 119-2736-00 IC_DIGITALHCMOS_FLIP_FLOP_DUAL_J_K 04713 MC74HC113N AIA1U2031 119-2736-00
IC_DIGITALLASTIL_FLIP_FLOP_DUAL_J_K 01295 SN74ALS178N AIA1U2033 156-2799-00 IC_DIGITALLASTIL_FLIP_FLOP_DUAL_J_K 01295 SN74ALS178N AIA1U2033 156-2098-00 IC_DIGITALLASTIL_FLIP_FLOP_DUAL_J_K 01295 SN74ALS178N AIA1U2034 156-2098-00 IC_DIGITALHCMOS_FLIP_FLOP_OCUAD_D-TYPE 01295 SN74ALS178N AIA1U2034 156-2098-00 IC_DIGITALHCMOS_FLIP_FLOP_OCUAD_D-TYPE 01295 SN74ALS178N AIA1U2034 156-2789-00 IC_DIGITALHCMOS_FLIP_FLOP_OCUAD_D-TYPE 01295 | A1A1U1034 | 156-0991-02 | | | | IC,LINEAR:VOLTAGE REGULATOR | 04713 | MC78L05ACPRP | | ATATUTO42 156-3180-00 IC, DIGITAL+HCMOS, GATE; TRIPLE 3-INPUT NOR 04713 MC74HC27N ATATUTO41 156-245-00 IC, DIGITAL+HCMOS, GATE; CUAD 2-INPUT OR 01295 SAYAH-C32N ATATU2011 156-245-00 IC, DIGITAL+HCMOS, BUFFER NONINY OCTAL 27014 MM74HC244N 136-0755-00 SOCKET, DIP-PGB, 28 POS, 2X 14, 0.1 X 0.6 CTR 09922 DIBBS8P-108 ATATU2021 156-358-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2022 156-2583-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2023 156-2209-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2023 156-2209-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2024 156-2583-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2025 156-2763-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2025 156-2763-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2026 156-2583-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2026 156-2583-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2026 156-2763-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2026 156-2763-00 IC, DIGITAL+HCMOS, DEMUX/DECODER 01295 SAYAH-C138N ATATU2027 156-2763-00 IC, DIGITAL+HCMOS, COUNTER TIMER 82C54 34-69 P82C54 ATATU2031 159-2736-00 IC, DIGITAL+HCMOS, COUNTER TIMER 82C54 34-69 P82C54 ATATU2032 156-2096-00 IC, DIGITAL-ALSTITL, FLIP FLOP-DUAL J-K 01295 SAYAALS 175N ATATU2033 156-2799-00 IC, DIGITAL-ALSTITL, FLIP FLOP-DUAL J-K 01295 SAYAALS 175N ATATU2033 156-2096-00 IC, DIGITAL-ALSTITL, FLIP FLOP-DUAL J-K 01295 SAYAALS 175N ATATU2034 156-2098-00 IC, DIGITAL-ALSTITL, FLIP FLOP-DUAL J-K 01295 SAYAALS 175N ATATU2034 156-2098-00 IC, DIGITAL-ALSTITL, FLIP FLOP-DUAL J-K 01295 SAYAALS 175N ATATU2034 156-2098-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL J-K 01295 SAYAALS 175N ATATU2034 156-2098-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL J-K 01295 SAYAALS 175N ATATU2034 156-2098-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL J-K 01295 SAYAALS 175N ATATU2034 156-2299-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL J-K 01295 SAYAALS 173N ATATU2034 156-2299-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL J-K 0 | A1A1U1040 | 156-3058-00 | | | | IC,DIGITAL:HCMOS,GATE;DUAL 4-INPUT NAND | 01295 | SN74HC20N | | ATATU2013 156-2463-00 | A1A1U1041 | 156-2009-00 | | | | IC,DIGITAL:HCMOS,FLIP FLOP;DUAL D-TYP | 01295 | SN74HC74N | | ATATU2011 156-2415-00 IC, DIGITAL:HCMOS, TRANSCEIVER, OCTAL, NONINV 04713 MC74HC245AN ATATU2012 156-3110-00 IC, DIGITAL:HCMOS, BUFFER; NONINV OCTAL 27014 MM74HC244N 136-0755-00 SOCKET, DIPP-CB, 28 POS, 2X 14, 0.1 X 0.6 CTR 09922 DILB; 28 POS, | A1A1U1042 | 156-3180-00 | | | | IC,DIGITAL:HCMOS,GATE;TRIPLE 3-INPUT NOR | 04713 | MC74HC27N | | ATATU2012 156-3110-00 | A1A1U1043 | 156-2463-00 | | | | IC,DITIAL:HCMOS,GATE;QUAD 2-INPUT OR | 01295 | SN74HC32N | | 136-0755-00 SOCKET,DIP-PCB_2B POS_2 X 14_0.1 X 0.6 CTR 09922 DILB2BP-108 | A1A1U2011 | 156-2415-00 | | | | IC,DIGITAL:HCMOS,TRANSCEIVER;OCTAL,NONINV | 04713 | MC74HC245AN | | ATATU2021 156-2583-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2022 156-2583-00 IC, DIGITAL: HCMOS, FLIP FLOP-DUAL D-TYP 01295 SN74HC138N ATATU2023 156-2009-00 IC, DIGITAL: HCMOS, FLIP FLOP-DUAL D-TYP 01295 SN74HC138N ATATU2024 156-2583-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2025 156-2763-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2026 156-2583-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2027 156-2763-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2027 156-2763-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2020 156-2767-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2021 119-2736-00 IC, DIGITAL: HCMOS, DEMUX/DECODER 04713 MC74HC113N ATATU2031 119-2736-00 IC, DIGITAL: ALSTTI, FLIP FLOP-DUAL J-K 04713 MC74HC113N ATATU2032 156-2906-00 IC, DIGITAL: ALSTTI, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS 175N ATATU2033 156-2909-00 IC, DIGITAL: ALSTTI, FLIP FLOP-DUAL D-K 01295 SN74ALS 175N ATATU2034 156-2092-00 IC, DIGITAL: ALSTTI, FLIP FLOP-DUAL D-K 01295 SN74ALS 175N ATATU2034 156-2098-00 IC, DIGITAL: ALSTTI, FLIP FLOP-DUAL D-K ATATU2040 156-2437-00 IC, DIGITAL: ALSTTI, FLIP FLOP-DUAL D-K ATATU2041 156-2759-00 IC, DIGITAL: ALSTTI, FLIP FLOP-DUAL D-K ATATU2042 156-2437-00 IC, DIGITAL: ALSTTI, FLIP FLOP-DUAL D-K ATATU2043 156-2437-00 IC, DIGITAL: ALSTTI, FLIP FLOP-DUAL D-K ATATU2044 156-3107-00 IC, DIGITAL: HCMOS, FLIP FLOP-DUAL D-K ATATU2045 156-2759-00 IC, DIGITAL: HCMOS, FLIP FLOP-DUAL D-K ATATU2046 156-3107-00 IC, DIGITAL: HCMOS, FLIP FLOP-DUAL D-K ATATU2047 156-3107-00 IC, DIGITAL: HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC37AN ATATU2045 156-2421-00 IC, DIGITAL: HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC37AN ATATU2045 156-2066-00 IC, DIGITAL: HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC37AN ATATU2040 156-3107-00 IC, DIGITAL: HCMOS, FLIP FLOP-DUA | A1A1U2012 | 156-3110-00 | | | | IC,DIGITAL:HCMOS,BUFFER;NONINV OCTAL | 27014 | MM74HC244N | | ATATU2022 156-2583-00 IC, DIGITAL:HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2024 156-2583-00 IC, DIGITAL:HCMOS, FLIP FLOP-DUAL D-TYP 01295 SN74HC138N ATATU2025 156-2763-00 IC, DIGITAL:HCMOS, FLIP FLOP-DUAL J-K 04713 MC74HC138N ATATU2026 156-2583-00 IC, DIGITAL:HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2026 156-2583-00 IC, DIGITAL:HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2027 156-2763-00 IC, DIGITAL:HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2020 156-2763-00 IC, DIGITAL:HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2030 156-2767-00 IC, DIGITAL:HCMOS, DEMUX/DECODER 04713 MC74HC113N ATATU2031 156-2767-00 IC, DIGITAL:ALSCOPE 75378 MXO-556A-31-20M ATATU2032 156-2096-00 IC, DIGITAL:ALSCOPE 75378 MXO-556A-31-20M ATATU2033 156-2759-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 01295 SN74ALS175N ATATU2034 156-2092-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS175N ATATU2035 156-2098-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAD D-TYPE 01295 SN74ALS175N ATATU2036 156-2098-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAD D-TYPE 01295 SN74ALS175N ATATU2037 156-2098-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAD D-TYPE 01295 SN74ALS161BN ATATU2040 156-2437-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAD D-TYPE 01295 SN74ALS161BN ATATU2041 156-2438-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAD D-TYPE 01295 SN74ALS161BN ATATU2042 156-2458-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 07295 TAALS113 ATATU2043 156-2458-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 07295 SN74ALS113 ATATU2044 156-2458-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 07295 SN74ALS113 ATATU2045 156-2759-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 07295 SN74ALS113 ATATU2046 156-2451-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 07295 SN74ALS113 ATATU2040 156-2451-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 07295 SN74ALS113 ATATU2041 156-2460-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 07295 SN74ALS14N ATATU2040 156-3107-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 07295 SN74ALS14N ATATU2040 156-3107-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL J-K 07295 SN74ALS14N ATATU2040 156-3107-00 IC, DIGITAL:ALSTTL, FLIP FLOP-DUAL | | 136-0755-00 | | | | SOCKET,DIP:PCB,28 POS,2 X 14,0.1 X 0.6 CTR | 09922 | DILB28P-108 | | ATATU2023 156-209-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL D—TYP 01295 SN74HC74N ATATU2024 156-2583-00 IC, DIGITAL:HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2025 156-2763-00 IC, DIGITAL:HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2026 156-2583-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 04713 MC74HC113N ATATU2027 156-2763-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 04713 MC74HC13N ATATU2027 156-2763-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 04713 MC74HC13N ATATU2030 156-2767-00 IC, DGTL:CHMOS, COUNTER TIMER 82C54 34649 P82C54 ATATU2031 119-2736-00 CRYSTAL, SCOPE 75378 MXO-556A-31-20M ATATU2032 156-2096-00 IC, DIGITAL:ALSTTL, FLIP FLOP; DUAL J—K 01295 SN74ALS175N ATATU2033
156-2759-00 IC, DIGITAL:ALSTTL, FLIP FLOP; DUAL J—K 01295 SN74ALS175N ATATU2034 156-2096-00 IC, DIGITAL:ALSTTL, FLIP FLOP; DUAL J—K 01295 SN74ALS175N ATATU2036 156-2096-00 IC, DIGITAL:ALSTTL, FLIP FLOP; DUAD D—TYPE 01295 SN74ALS175N ATATU2037 156-2098-00 IC, DIGITAL:ALSTTL, FLIP FLOP; DUAD D—TYPE 01295 SN74ALS175N ATATU2040 156-2379-00 IC, DIGITAL:ALSTTL, FLIP FLOP; DUAD D—TYPE 01295 SN74ALS175N ATATU2041 156-2427-00 IC, DIGITAL:ALSTTL, FLIP FLOP; DUAL J—K 01295 SN74ALS175N ATATU2040 156-2437-00 IC, DIGITAL:ALSTTL, FLIP FLOP; DUAL J—K 01295 SN74ALS175N ATATU2041 156-2759-00 IC, DIGITAL:HCTCMOS, GATE; QUAD 2—INPUT AND 34371 CD74HCT08E17 ATATU2042 156-2759-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 01295 SN74HC374N ATATU2043 156-2421-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 01295 SN74HC374N ATATU2044 156-3107-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 01295 SN74HC374N ATATU2045 156-3107-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 01295 SN74HC374N ATATU2046 156-3107-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 01295 SN74HC374N ATATU2046 156-3107-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 01295 SN74HC374N ATATU2046 156-3107-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 01295 SN74HC374N ATATU2041 156-3107-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL J—K 01295 SN74HC374N ATATU2041 156-3107-00 IC, DIGITAL:HCMOS, FLIP FLOP; DUAL D—TYPE 01295 SN74HC374N ATATU2040 156-3107-00 I | A1A1U2021 | 156-2583-00 | | | | IC,DIGITAL:HCMOS,DEMUX/DECODER | 01295 | SN74HC138N | | ATATU2024 156-2583-00 IC, DIGITAL-HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2025 156-2763-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL J-K 04713 MC74HC113N ATATU2026 156-2583-00 IC, DIGITAL-HCMOS, DEMUX/DECODER 01295 SN74HC138N ATATU2027 156-2763-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL J-K 04713 MC74HC113N ATATU2030 156-2767-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL J-K 04713 MC74HC113N ATATU2031 119-2736-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS175N ATATU2032 156-2096-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL J-K 01295 SN74ALS175N ATATU2033 156-2092-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS02N ATATU2034 156-2096-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS175N ATATU2037 156-2098-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS175N ATATU2037 156-2098-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS175N ATATU2034 156-2437-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS175N ATATU2040 156-2437-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS175N ATATU2041 156-2759-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS175N ATATU2042 156-2759-00 IC, DIGITAL-ALSTTL, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS113 ATATU2043 156-2421-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74ALS113 ATATU2044 156-3107-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC374N ATATU2045 156-3151-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC374N ATATU2046 156-3107-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC374N ATATU2045 156-2360-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC374N ATATU3040 156-3107-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC374N ATATU3020 156-2020-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC374N ATATU3020 156-3107-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC374N ATATU3020 156-3107-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC374N ATATU3020 156-3007-00 IC, DIGITAL-HCMOS, FLIP FLOP-DUAL D-TYPE 01295 SN74HC374N ATATU3030 156-3007-00 IC, DIGIT | A1A1U2022 | 156-2583-00 | | | | IC,DIGITAL:HCMOS,DEMUX/DECODER | 01295 | SN74HC138N | | ATATU2025 156-2763-00 IC,DIGITAL:HCMOS,FLIP FLOP:DUAL J-K 04713 MC74HC113N ATATU2026 156-2583-00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N ATATU2027 156-2763-00 IC,DIGITAL:HCMOS,COUNTER TIMER 82C54 34649 P82C54 ATATU2030 156-2767-00 IC,DIGITAL:HCMOS,COUNTER TIMER 82C54 34649 P82C54 ATATU2031 119-2736-00 CRYSTAL,SCOPE 75378 MXO-55GA-31-20M ATATU2032 156-2096-00 IC,DIGITAL:ALSTTL,FLIP FLOP:DUAL J-K 01295 SN74ALS175N ATATU2033 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP:DUAD D-TYPE 01295 SN74ALS175N ATATU2034 156-2092-00 IC,DIGITAL:ALSTTL,FLIP FLOP:DUAL J-K 01295 SN74ALS175N ATATU2034 156-2096-00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH a-BIT 01295 SN74ALS175N ATATU2036 156-2096-00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH a-BIT 01295 SN74ALS175N ATATU2030 156-2437-00 IC,DIGITAL:ALSTTL,FLIP FLOP:DUAL J-K 01295 SN74ALS161BN ATATU2040 156-2437-00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH a-BIT 01295 SN74ALS161BN ATATU2041 156-2768-00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH a-BIT 01295 SN74ALS161BN ATATU2042 156-2759-00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH a-BIT 01295 SN74ALS161BN ATATU2041 156-2768-00 IC,DIGITAL:HCMOS,FLIP FLOP:DUAL J-K 01295 TALST13 ATATU2044 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP:DUAL J-K 01295 SN74HC374N ATATU2044 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP:OCTAL D-TYPE 01295 SN74HC374N ATATU2045 156-1752-00 IC,DIGITAL:HCMOS,FLIP FLOP:OCTAL D-TYPE 01295 SN74HC374N ATATU2046 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP:OCTAL D-TYPE 01295 SN74HC374N ATATU3040 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP:OCTAL D-TYPE 01295 SN74HC374N ATATU3040 156-307-00 IC,DIGITAL:HCMOS,FLIP FLOP:OCTAL D-TYPE 01295 SN74HC374N ATATU3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP:OCTAL D-TYPE 01295 SN74HC374N ATATU3030 156-307-00 IC,DIGITAL:HCMOS,FLIP FLOP:OCTAL D-TY | A1A1U2023 | 156-2009-00 | | | | IC,DIGITAL:HCMOS,FLIP FLOP;DUAL D-TYP | 01295 | SN74HC74N | | A1A1U2026 156-2583-00 IC,DIGITAL:HCMOS,DEMUX/DECODER 01295 SN74HC138N A1A1U2027 156-2763-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K 04713 MC74HC113N A1A1U2030 156-2767-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K 04713 MC74HC113N A1A1U2031 119-2736-00 CRYSTAL,SCOPE 75378 MXO-55GA-3I-20M A1A1U2032 156-2096-00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS175N A1A1U2033 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 A1A1U2034 156-2092-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 SN74ALS175N A1A1U2036 156-2096-00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS175N A1A1U2037 156-2098-00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS175N A1A1U2037 156-2098-00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH 4-BIT 01295 SN74ALS175N A1A1U2040 156-2437-00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH 4-BIT 01295 SN74ALS175N A1A1U2041 156-2768-00 IC,DIGITAL:ALSTTL,EIP FLOP;QUAD D-TYPE 01295 SN74ALS175N A1A1U2042 156-2759-00 IC,DIGITAL:ALSTTL,EIP FLOP;DUAL J-K 01295 SN74ALS113 A1A1U2042 156-2421-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K 01295 NA74HC374N A1A1U2043 156-2421-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL D-TYPE 01295 SN74HC374N A1A1U2044 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2045 156-3151-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2046 156-3151-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3040 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01795 SN74HC374N A1A1U3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01795 SN74HC374N A1A1U3040 156-3107-00 IC,DIGITAL:HCMOS,FLIP F | A1A1U2024 | 156-2583-00 | | | | IC,DIGITAL:HCMOS,DEMUX/DECODER | 01295 | SN74HC138N | | A1A1U2027 156-2763-00 IC_DIGITAL:HCMOS_FLIP FLOP_DUAL_J_K 04713 MC74HC113N A1A1U2030 156-2767-00 IC_DGTL:CHMOS_COUNTER TIMER 82C54 34649 P82C54 A1A1U2031 119-2736-00 CRYSTAL_SCOPE 75378 MXO-55GA-3I-20M A1A1U2032 156-2096-00 IC_DIGITAL:ALSTTL_FLIP FLOP;DUAL_J_K 01295 SN74ALS175N A1A1U2033 156-2759-00 IC_DIGITAL:ALSTTL_FLIP FLOP;DUAL_J_K 01295 74ALS113 A1A1U2034 156-2092-00 IC_DIGITAL:ALSTTL_GATE:QUAD_2-INPUT NOR 01295 SN74ALS02N A1A1U2036 156-2096-00 IC_DIGITAL:ALSTTL_FLIP FLOP;DUAL_D_TYPE 01295 SN74ALS175N A1A1U2037 156-2098-00 IC_DIGITAL:ALSTTL_COUNTER:SYNCH_4-BIT 01295 SN74ALS161BN A1A1U2040 156-2437-00 IC_DIGITAL:ALSTTL_COUNTER:SYNCH_4-BIT 01295 SN74ALS161BN A1A1U2041 156-2768-00 IC_DIGITAL:ALSTTL_FLIP FLOP;DUAL_J_K 01295 N74ALS161BN A1A1U2042 156-2759-00 IC_DIGITAL:ALSTTL_FLIP FLOP;DUAL_J_K 01295 N74ALS113 A1A1U2043 156-2421-00 IC_DIGITAL:ALSTTL_FLIP FLOP;DUAL_J_K 01295 N74ALS113 A1A1U2044 156-3107-00 IC_DIGITAL:ALSTTL_FLIP FLOP;DUAL_J_K 01295 N74ALS113 A1A1U2044 156-3107-00 IC_DIGITAL:ALSTTL_FLIP FLOP;DUAL_D_TYPE 01795 N74ALS113 A1A1U2044 156-3107-00 IC_DIGITAL:HCMOS_FLIP FLOP;DCTAL_D_TYPE 01795 N74HC374N A1A1U2044 156-3151-00 IC_DIGITAL:HCMOS_FLIP FLOP;DCTAL_D_TYPE 01295 N74HC374N A1A1U2046 156-3151-00 IC_DIGITAL:HCMOS_FLIP FLOP;DCTAL_D_TYPE 01295 N74HC374N A1A1U3040 156-2026-00 IC_DIGITAL:HCMOS_FLIP FLOP;DCTAL_D_TYPE 01295 N74HC374N A1A1U3040 156-3107-00 IC_DIGITAL:HCMOS_FLIP FLOP;DCTAL_D_TYPE 01295 N74HC374N A1A1U3020 156-2026-00 IC_DIGITAL:HCMOS_FLIP FLOP;DCTAL_D_TYPE 01295 N74HC374N A1A1U3020 156-2026-00 IC_DIGITAL:HCMOS_FLIP FLOP;DCTAL_D_TYPE 01795 N74HC374N A1A1U3040 156-315-00 IC_DIGITAL:HCMOS_FLIP FLOP;DCTAL_D_TYPE | A1A1U2025 | 156-2763-00 | | | | IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K | 04713 | MC74HC113N | | ATA1U2030 156-2767-00 IC,DGTL:CHMOS,COUNTER TIMER 82C54 34649 P82C54 ATA1U2031 119-2736-00 CRYSTAL,SCOPE 75378 MXO-55GA-3I-20M ATA1U2032 156-2096-00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS175N ATA1U2033 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 ATA1U2034 156-2092-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL D-TYPE 01295 SN74ALS02N ATA1U2036 156-2096-00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS175N ATA1U2037 156-2098-00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS161BN ATA1U2040 156-2437-00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH 4-BIT 01295 SN74ALS161BN ATA1U2041 156-2768-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 CD74HCT08E17 ATA1U2042 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 ATA1U2043 156-2421-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 ATA1U2044 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 014713 MC74HC175N ATA1U2045 156-3151-00
IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U2046 156-3151-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3040 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3040 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3022 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3022 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3023 156-0927-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3030 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3030 156-0927-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N ATA1U3030 156-0927-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01795 SN74HC374N ATA1U3030 156-0927-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01795 SN74HC374N ATA1U3030 156-0927-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01795 SN74HC374N ATA1U3030 156-0927-00 IC,DIGITAL:HC | A1A1U2026 | 156-2583-00 | | | | IC,DIGITAL:HCMOS,DEMUX/DECODER | 01295 | SN74HC138N | | A1A1U2031 119-2736-00 | A1A1U2027 | 156-2763-00 | | | | IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K | 04713 | MC74HC113N | | A1A1U2032 156-2096-00 IC,DIGITAL:ALSTTL,FLIP FLOP;OUAD D-TYPE 01295 SN74ALS175N A1A1U2033 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 A1A1U2034 156-2092-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 SN74ALS02N A1A1U2036 156-2096-00 IC,DIGITAL:ALSTTL,FLIP FLOP;OUAD D-TYPE 01295 SN74ALS175N A1A1U2037 156-2098-00 IC,DIGITAL:ALSTTL,FLIP FLOP;OUAD D-TYPE 01295 SN74ALS161BN A1A1U2040 156-2437-00 IC,DIGITAL:ALSTTL,COUNTER;SYNCH 4-BIT 01295 SN74ALS161BN A1A1U2041 156-2768-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL D-INPUT AND 34371 CD74HCT08E17 A1A1U2042 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 A1A1U2043 156-2421-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL D-K 01295 NA74HC175N A1A1U2044 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2045 156-1752-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2046 156-3151-00 IC,INTFC:CMOS,DIA CONVERTER 24355 AD7534JN A1A1U3040 156-307-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OUAD D-TYPE 04713 MC74HC175N A1A1U3021 156-0927-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2:5V,1.0% 04713 MC1403U A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2:5V,1.0% 04713 MC1403U | A1A1U2030 | 156-2767-00 | | | | IC,DGTL:CHMOS,COUNTER TIMER 82C54 | 34649 | P82C54 | | A1A1U2033 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 A1A1U2034 156-2092-00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS02N A1A1U2036 156-2098-00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS161BN A1A1U2037 156-2098-00 IC,DIGITAL:ALSTTL,COUNTER;SYNCH 4-BIT 01295 SN74ALS161BN A1A1U2040 156-2437-00 IC,DIGITAL:ALSTTL,COUNTER;SYNCH 4-BIT 01295 SN74ALS161BN A1A1U2041 156-2768-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL Z-INPUT AND 34371 CD74HCT08E17 A1A1U2042 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL Z-K 01295 74ALS113 A1A1U2043 156-2421-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL Z-K 01295 74ALS113 A1A1U2044 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAD D-TYPE 01295 SN74HC374N A1A1U2045 156-1752-00 IC,DIGITAL:FTTL,GATE;TRIPLE 3-INPUT NAND 04713 MC 74F10N A1A1U2046 156-3151-00 IC,INTFC:CMOS,DIA CONVERTER 24355 AD7534JN A1A1U3040 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-0226-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-0297-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 04713 MC74HC175N A1A1U3021 156-0297-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 04713 MC74HC175N A1A1U3021 156-0297-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 04713 MC74HC175N A1A1U3021 156-0307-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 04713 MC74HC175N A1A1U3021 156 | A1A1U2031 | 119-2736-00 | | | | CRYSTAL,SCOPE | 75378 | MXO-55GA-3I-20M | | A1A1U2034 156-2092-00 IC,DIGITAL:ALSTTL,GATE;QUAD 2-INPUT NOR 01295 SN74ALS02N A1A1U2036 156-2098-00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS161BN A1A1U2037 156-2098-00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH 4-BIT 01295 SN74ALS161BN A1A1U2040 156-2437-00 IC,DIGITAL:HCTCMOS,GATE;QUAD 2-INPUT AND 34371 CD74HCT08E17 A1A1U2041 156-2768-00 IC,LINEAR:12 BIT PLUS SIGN 1205 27014 ADC1205 A1A1U2042 156-2759-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U2043 156-2421-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U2044 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U2045 156-1752-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U2046 156-3151-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3010 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC02AN A1A1U3021 156-2027-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3021 156-0927-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC3410CL A1A1U3040 156-1173-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2:5V,1.0% 04713 MC3410CL A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2:5V,1.0% 04713 MC1403U | A1A1U2032 | 156-2096-00 | | | | IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE | 01295 | SN74ALS175N | | A1A1U2036 156–2096–00 IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE 01295 SN74ALS175N A1A1U2037 156–2098–00 IC,DIGITAL:ALSTTL,COUNTER:SYNCH 4-BIT 01295 SN74ALS161BN A1A1U2040 156–2437–00 IC,DIGITAL:HCTCMOS,GATE;QUAD 2-INPUT AND 34371 CD74HCT08E17 A1A1U2041 156–2768–00 IC,LINEAR:12 BIT PLUS SIGN 1205 27014 ADC1205 A1A1U2042 156–2759–00 IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K 01295 74ALS113 A1A1U2043 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U2044 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2045 156–1752–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2046 156–3151–00 IC,INTFC:CMOS,D/A CONVERTER 24355 AD7534JN A1A1U3010 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156–2026–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3023 156–0927–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3024 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156–3107–0 | A1A1U2033 | 156-2759-00 | | | | IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K | 01295 | 74ALS113 | | A1A1U2037 156–2098–00 IC,DIGITAL:ALSTTL,COUNTER;SYNCH 4-BIT 01295 SN74ALS161BN A1A1U2040 156–2437–00 IC,DIGITAL:HCTCMOS,GATE;QUAD 2-INPUT AND 34371 CD74HCT08E17 A1A1U2041 156–2768–00 IC,LINEAR:12 BIT PLUS SIGN 1205 27014 ADC1205 A1A1U2042 156–2759–00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 A1A1U2043 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U2044 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2045 156–1752–00 IC,DIGITAL:FTTL,GATE;TRIPLE 3-INPUT NAND 04713 MC 74F10N A1A1U2046 156–3151–00 IC,INTFC:CMOS,D/A CONVERTER 24355 AD7534JN A1A1U3010 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156–2026–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01795 SN74HC374N A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01795 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 04713 MC74HC175N A1A1U3023 156–0927–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U | A1A1U2034 | 156-2092-00 | | | | IC,DIGITAL:ALSTTL,GATE;QUAD 2-INPUT NOR | 01295 | SN74ALS02N | | A1A1U2040 156-2437-00 IC,DIGITAL:HCTCMOS,GATE;QUAD 2-INPUT AND 34371 CD74HCT08E17 A1A1U2041 156-2768-00 IC,LINEAR:12 BIT PLUS SIGN 1205 27014 ADC1205 A1A1U2042 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 A1A1U2043 156-2421-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U2044 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U2045 156-1752-00 IC,INTFC:CMOS,D/A CONVERTER 24355 AD7534JN A1A1U2046 156-3151-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3010 156-3107-00
IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156-2421-00 IC,DIGITAL:HCMOS,FLIP FLOP;QCTAL D-TYPE 01295 SN74HC374N A1A1U3023 156-0927-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3024 156-1173-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC3410CL A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308-02 | A1A1U2036 | 156-2096-00 | | | | IC,DIGITAL:ALSTTL,FLIP FLOP;QUAD D-TYPE | 01295 | SN74ALS175N | | A1A1U2041 156-2768-00 IC,LINEAR:12 BIT PLUS SIGN 1205 27014 ADC1205 A1A1U2042 156-2759-00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K 01295 74ALS113 A1A1U2043 156-2421-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U2044 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2045 156-3151-00 IC,JINTFC:CMOS,D/A CONVERTER 24355 AD7534JN A1A1U3010 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156-2026-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156-2421-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 04713 MC74HC02AN A1A1U3023 156-0927-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3040 156-1173-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308-02 | A1A1U2037 | 156-2098-00 | | | | IC,DIGITAL:ALSTTL,COUNTER;SYNCH 4-BIT | 01295 | SN74ALS161BN | | A1A1U2042 156–2759–00 IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J–K 01295 74ALS113 A1A1U2043 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D–TYPE 04713 MC74HC175N A1A1U2044 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D–TYPE 01295 SN74HC374N A1A1U2045 156–1752–00 IC,DIGITAL:FTTL,GATE;TRIPLE 3–INPUT NAND 04713 MC 74F10N A1A1U2046 156–3151–00 IC,INTFC:CMOS,D/A CONVERTER 24355 AD7534JN A1A1U3010 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D–TYPE 01295 SN74HC374N A1A1U3020 156–2026–00 IC,DIGITAL:HCMOS,GATE;QUAD 2–INPUT NOR 04713 MC74HC02AN A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D–TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D–TYPE 04713 MC74HC175N A1A1U3023 156–0927–00 IC,DIGITAL:HCMOS,FLIP FLOP;OUAD D–TYPE 04713 MC3410CL A1A1U3040 156–1173–00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 0473 MC1403U | A1A1U2040 | 156-2437-00 | | | | IC,DIGITAL:HCTCMOS,GATE;QUAD 2-INPUT AND | 34371 | CD74HCT08E17 | | A1A1U2043 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U2044 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2045 156–1752–00 IC,DIGITAL:FTTL,GATE;TRIPLE 3-INPUT NAND 04713 MC 74F10N A1A1U2046 156–3151–00 IC,INTFC:CMOS,D/A CONVERTER 24355 AD7534JN A1A1U3010 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156–2026–00 IC,DIGITAL:HCMOS,GATE;QUAD 2-INPUT NOR 04713 MC74HC02AN A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3023 156–0927–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC3410CL A1A1U3040 156–1173–00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U | A1A1U2041 | 156-2768-00 | | | | IC,LINEAR:12 BIT PLUS SIGN 1205 | 27014 | ADC1205 | | A1A1U2044 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U2045 156–1752–00 IC,DIGITAL:FTTL,GATE;TRIPLE 3-INPUT NAND 04713 MC 74F10N A1A1U2046 156–3151–00 IC,INTFC:CMOS,D/A CONVERTER 24355 AD7534JN A1A1U3010 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156–2026–00 IC,DIGITAL:HCMOS,GATE;OUAD 2-INPUT NOR 04713 MC74HC02AN A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 04713 MC74HC175N A1A1U3023 156–0927–00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3040 156–1173–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308–02 | A1A1U2042 | 156-2759-00 | | | | IC,DIGITAL:ALSTTL,FLIP FLOP;DUAL J-K | 01295 | 74ALS113 | | A1A1U2045 156–1752–00 IC,DIGITAL:FTTL,GATE;TRIPLE 3-INPUT NAND 04713 MC 74F10N A1A1U2046 156–3151–00 IC,INTFC:CMOS,D/A CONVERTER 24355 AD7534JN A1A1U3010 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156–2026–00 IC,DIGITAL:HCMOS,GATE;QUAD 2-INPUT NOR 04713 MC74HC02AN A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3023 156–0927–00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3040 156–1173–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308–02 | A1A1U2043 | 156-2421-00 | | | | IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE | 04713 | MC74HC175N | | A1A1U3046 156-3151-00 IC,INTFC:CMOS,D/A CONVERTER 24355 AD7534JN A1A1U3010 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156-2026-00 IC,DIGITAL:HCMOS,GATE;QUAD 2-INPUT NOR 04713 MC74HC02AN A1A1U3021 156-3107-00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156-2421-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3023 156-0927-00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3040 156-1173-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308-02 | A1A1U2044 | 156-3107-00 | | | | IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE | 01295 | SN74HC374N | | A1A1U3010 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156–2026–00 IC,DIGITAL:HCMOS,GATE;QUAD 2-INPUT NOR 04713 MC74HC02AN A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3023 156–0927–00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3040 156–1173–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308–02 | A1A1U2045 | 156-1752-00 | | | | IC,DIGITAL:FTTL,GATE;TRIPLE 3-INPUT NAND | 04713 | MC 74F10N | | A1A1U3010 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3020 156–2026–00 IC,DIGITAL:HCMOS,GATE;QUAD 2-INPUT NOR 04713 MC74HC02AN A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3023 156–0927–00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3040 156–1173–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308–02 | A1A1U2046 | 156-3151-00 | | | | IC,INTFC:CMOS,D/A CONVERTER | 24355 | AD7534JN | | A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3023 156–0927–00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3040 156–1173–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308–02 | A1A1U3010 | 156-3107-00 | | | | | 01295 | SN74HC374N | | A1A1U3021 156–3107–00 IC,DIGITAL:HCMOS,FLIP FLOP;OCTAL D-TYPE 01295 SN74HC374N A1A1U3022 156–2421–00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3023 156–0927–00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3040 156–1173–00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156–0854–00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308–02 | A1A1U3020 | | | | | | | | | A1A1U3022 156-2421-00 IC,DIGITAL:HCMOS,FLIP FLOP;QUAD D-TYPE 04713 MC74HC175N A1A1U3023 156-0927-00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3040 156-1173-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308-02 | A1A1U3021 | | | | | | | | | A1A1U3023 156-0927-00 IC,LINEAR:DIGITAL TO ANALOG CONVERTER 04713 MC3410CL A1A1U3040 156-1173-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308-02 | A1A1U3022 | | | | | • | | MC74HC175N | | A1A1U3040 156-1173-00 IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% 04713 MC1403U A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308-02 | | | | | | | | | | A1A1U3041 156-0854-00 IC,LINEAR:BIPOLAR,OP-AMP 24355 OP08FP OR PM308-02 | A1A1U3040 | A1A1U3042 | 156–1114–00 | | | | IC,LINEAR:MOS/FET INP,COS/MOS OUT,OP AMP | 34371 | CA3160E | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|----------------------| | A1A1U4020 | 156–3151–00 | | | | IC,INTFC:CMOS,D/A CONVERTER | 24355 | AD7534JN | | A1A1U4021 | 156-1699-00 | | | | IC,LINEAR:DUAL BI-FET,OPNL AMPL,LOW OFFSET | 01295 | TL288CP | | A1A1U4040 | 156-0513-00 | | | | IC,MISC:CMOS,ANALOG MUX;8 CHANNEL | 04713 | MC14051BCP | | A1A1U5010 | 156-0854-00 | | | | IC,LINEAR:BIPOLAR,OP-AMP | 24355 | OP08FP OR PM308-026P | | A1A1U5020 | 156-1156-00 | | | |
IC,LINEAR:BIFET,OP-AMP;;LF356N,DIP08.3 | 04713 | LF356N | | A1A1U5040 | 156-1114-00 | | | | IC,LINEAR:MOS/FET INP,COS/MOS OUT,OP AMP | 34371 | CA3160E | | A1A1U6040 | 156-0513-00 | | | | IC,MISC:CMOS,ANALOG MUX;8 CHANNEL | 04713 | MC14051BCP | | A1A1U7010 | 156-2763-00 | | | | IC,DIGITAL:HCMOS,FLIP FLOP;DUAL J-K | 04713 | MC74HC113N | | A1A1U7040 | 156-1114-00 | | | | IC,LINEAR:MOS/FET INP,COS/MOS OUT,OP AMP | 34371 | CA3160E | | A1A1U8010 | 156-1707-00 | | | | IC,DIGITAL:FTTL,GATE;QUAD 2-INPUT NAND | 04713 | MC74F00 (N OR J) | | A1A1U8040 | 156-0513-00 | | | | IC,MISC:CMOS,ANALOG MUX;8 CHANNEL | 04713 | MC14051BCP | | A1A1U8041 | 156-1114-00 | | | | IC,LINEAR:MOS/FET INP,COS/MOS OUT,OP AMP | 34371 | CA3160E | | A1A1U9030 | 156-0496-00 | | | | IC,LINEAR:VOLTAGE REGULATOR RC4194D,MI | 34333 | SG4194CJ | | | | | | | | | | | A1A1VR3030 | 152-0647-00 | | | | DIODE,ZENER:6.8V,5%,0.4W;1N957B | 04713 | 1N957B | | A1A1VR6030 | 152-0514-00 | | | | DIODE,ZENER:10V,1%,0.4W;MZ4104D | 04713 | MZ4104D | | A2 | 672-1389-XX | CIRCUIT BD ASSY:FRONT PANEL | | | |---------|-------------|---------------------------------------|-------|-------------------| | A2C1011 | 283-0359-00 | CAP,FXD,CER DI:1000PF,10%,200V SQUARE | 18796 | RPE112NPO102K200V | | A2C1015 | 283-0359-01 | CAP,FXD,CER DI:1000PF,5%,200V SQUARE | 31433 | C322C102J2G5CA | | A2C2010 | 281-0925-01 | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C2011 | 281-0925-01 | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C2020 | 281-0925-01 | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C2021 | 290-0974-00 | CAP,FXD,ELCTLT:10UF,20%,50VDC AL | 55680 | UVX1H100MAA | | A2C2022 | 290-0974-00 | CAP,FXD,ELCTLT:10UF,20%,50VDC AL | 55680 | UVX1H100MAA | | A2C2023 | 281-0925-01 | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C2024 | 281-0925-01 | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C2025 | 283-0492-00 | CAP,FXD,CER DI:1000PF,20% DIP STYLE | 04222 | MD015C102MAA | | A2C2026 | 283-0492-00 | CAP,FXD,CER DI:1000PF,20% DIP STYLE | 04222 | MD015C102MAA | | A2C2027 | 283-0492-00 | CAP,FXD,CER DI:1000PF,20% DIP STYLE | 04222 | MD015C102MAA | | A2C2028 | 283-0492-00 | CAP,FXD,CER DI:1000PF,20% DIP STYLE | 04222 | MD015C102MAA | | A2C2030 | 281-0925-01 | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C2031 | 283-0492-00 | CAP,FXD,CER DI:1000PF,20% DIP STYLE | 04222 | MD015C102MAA | | A2C2032 | 283-0492-00 | CAP,FXD,CER DI:1000PF,20% DIP STYLE | 04222 | MD015C102MAA | | | | | | | | A2C30302 281-0925-01 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3022 281-0925-01 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3022 281-0925-01 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3023 281-0925-01 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3023 281-0925-01 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C30302 290-0919-00 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3031 290-0919-00 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3032 281-0925-01 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3032 281-0925-01 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C30332 281-0925-01 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C30334 A2C3034 281-0925-01 CAP_FXD_CER_DHMLC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C30 | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |--|----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|--------------------| | A2C3030 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3022 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3022 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3023 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3023 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3023 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3033 290-0919-00 CAP_FXD_ELCTLT_470UF_, 150-20%_38V AL 1W344 KME35V8471M10X20L A2C3031 290-0919-00 CAP_FXD_ELCTLT_470UF_, 150-20%_38V AL 1W344 KME35V8471M10X20L A2C30332 281-0925-01 CAP_FXD_ECR_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C30332 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224 | A2C2033 | 281–0925–01 | | , | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C3020 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3022 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA CAP_FXD_ECT_T-470UF_+50-20%_35V_AL 1W344 KME35VB471M10X20L A2C30331 290-0919-00 CAP_FXD_ECT_T-470UF_+50-20%_35V_AL 1W344 KME35VB471M10X20L A2C30332 281-0925-01 CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA CAP_FXD_ECT_DIMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA CAP_FXD_CER_DIMILC_0.22UF_20%_50V_ZRU CAP_FXD_CER_DIMIL | A2C2034 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C3021 281-0925-01 CAP_FXD_CER_DIMIC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3022 281-0925-01 CAP_FXD_CER_DIMIC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3023 281-0925-01 CAP_FXD_CER_DIMIC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3030 290-0919-00 CAP_FXD_CECT_LT-470UF_+50-20%_55V AL 1W344 KME35VB471M10X2DL A2C3031 290-0919-00 CAP_FXD_CECT_LT-470UF_+50-20%_55V AL 1W344 KME35VB471M10X2DL A2C3032 281-0925-01 CAP_FXD_CER_DIMIC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C30332 281-0925-01 CAP_FXD_CER_DIMIC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C30334 281-0925-01 CAP_FXD_CER_DIMIC_0_22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C30330 131-3187-00 CONN_HDR_PCB_MALE_STR_2 X 25_0.1 CTR 2526 66506-032 A2J3030 131-1857-00 CONN_HDR_PCB_MALE_STR_1 X 36_0.1 CTR 58050 082-3644-SS10 A2PS2030 119-2370-00 CONVERTER_DC_AC_15V IN_80V AT 400 HZ 63312 LPS15-1-2 A2C3030 151-1176-00 XSTR_PWR_MOS_P-CH:100V_1_0_A_0_6 OHM 04713 IRFD9120 A2C3030 151-1176-00 RES_FXD_MEMEAL_FILM=100K OHM,1%_0_2W 57668 CR820 FXE 100K A2C300 151-1176-00 RES_FXD_MEMEAL_FILM=100K OHM,1%_0_2W 57668 CR820 FXE 100K A2C300 151-1176-00 RES_FXD_MEMEAL_FILM=100K OHM, | A2C3010 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C3022 281-0925-01 CAP_FXD_CER_DEMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3023 281-0925-01 CAP_FXD_CER_DEMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3030 290-0919-00 CAP_FXD_CECTLT_470UF_150-20%_55V_AL 1W344 KME35VB471M10X2DL A2C3031 290-0919-00 CAP_FXD_CECTLT_470UF_150-20%_55V_AL 1W344 KME35VB471M10X2DL A2C3031 290-0919-00 CAP_FXD_CECTLT_470UF_150-20%_55V_AL 1W344 KME35VB471M10X2DL A2C3032 281-0925-01 CAP_FXD_CER_DEMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3033 281-0925-01 CAP_FXD_CER_DEMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3033 281-0925-01 CAP_FXD_CER_DEMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3034
CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_DEMILC_0.22UF_100_CAP_FXD_CER_ | A2C3020 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C3023 281-0925-01 CAP_FXD_CER_DEMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3030 290-0919-00 CAP_FXD_ELCTLT-470UF_+50-20%_35V_AL 1W344 KME35VB471M10X20L A2C3031 290-0919-00 CAP_FXD_ELCTLT_470UF_+50-20%_35V_AL 1W344 KME35VB471M10X20L A2C3032 281-0925-01 CAP_FXD_CER_DEMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3033 281-0925-01 CAP_FXD_CER_DEMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP_FXD_CER_DEMILC_0.22UF_20%_50V_ZRU 31433 C114C224M5Y5CA A2J1020 131-3147-00 CONN_HDR_PCB_MALE_STR_2 X 25.0.1 CTR 2526 66506-032 A2J3030 131-1857-00 CONN_HDR_PCB_MALE_STR_1 X 36.0.1 CTR 58050 082-3644-SS10 A2PS2030 19-2370-00 CONVERTER_DC - AC_15V IN_80V AT 400 HZ 63312 LPS15-1-2 A2Q1020 151-1176-00 XSTR_PWR_MOS_P-CH_100V_1.0.4.0.6 OHM 04713 IRFD9120 A2Q1030 151-1176-00 XSTR_PWR_MOS_P-CH_100V_1.0.4.0.6 OHM 04713 IRFD9120 A2Q1030 151-1176-00 XSTR_PWR_MOS_P-CH_100V_1.0.4.0.6 OHM 17856 VN0606L-TA A2Q1010 322-3385-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 57668 CRB20_FXE_100K A2Q1011 321-0816-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 5768 CRB20_FXE_100E A2Q1013 322-3347-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 5768 CRB20_FXE_100E A2Q1013 322-3347-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 5768 CRB20_FXE_100E A2Q1013 322-339-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 5768 CRB20_FXE_100E A2Q1021 322-3395-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 5768 CRB20_FXE_100K A2Q1023 322-3385-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 57668 CRB20_FXE_100K A2Q1024 322-3385-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 57668 CRB20_FXE_100K A2Q1024 322-3385-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 57668 CRB20_FXE_100K A2Q1023 322-3385-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 57668 CRB20_FXE_100K A2Q1023 322-3385-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 57668 CRB20_FXE_100K A2Q1023 322-3385-00 RES_FXD_METAL_FILM_100 OHM_1%_0.2W 57668 | A2C3021 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C3030 290-0919-00 CAP,FXD,ELCTLT:470UF,+50-20%,35V AL 1W344 KME35VB471M10X20L A2C3031 290-0919-00 CAP,FXD,ELCTLT:470UF,+50-20%,35V AL 1W344 KME35VB471M10X20L A2C3032 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3033 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2L1020 131-3147-00 CONN,HDR-PCB,MALE,STR,2 X 25.0.1 CTR 2526 66506-032 A2J3030 131-1857-00 CONN,HDR-PCB,MALE,STR,1 X 36,0.1 CTR 58050 082-3644-SS10 A2PS2030 119-2370-00 CONVERTER.DC - AC,15V IN,80V AT 400 HZ 63312 LPS15-1-2 A2C1020 151-1176-00 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q1030 151-1176-00 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q1030 151-1176-00 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2C1030 151-1121-01 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 17856 VN0606L-TA A2R1010 322-3385-00 RES,FXD,FILM-50 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321-0816-00 RES,FXD,FILM-50 OHM,1%,0.2W 5766 CRB20 FXE 100K A2R1013 322-3347-00 RES,FXD,FILM-50 OHM,1%,0.2W 5766 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD,FILM-60,2K OHM,1%,0.2W 5766 CRB20 FXE 100E A2R1021 322-3397-00 RES,FXD,FILM-50 OHM,1%,0.2W 5766 CRB20 FXE 100E A2R1021 322-3385-00 RES,FXD,FILM-60 OHM,1%,0.2W 5766 CRB20 FXE 100K A2R1023 322-3385-00 RES,FXD,METAL,FILM-1100K RES,FXD,METAL, | A2C3022 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C3031 290-0919-00 CAP,FXD,ELCTLT:470UF,+50-20%,35V AL 1W344 KME35VB471M10X20L A2C3032 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3033 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CONN.HDR.PCB,MALE,STR.2 X 25.0.1 CTR 2526 66508-032 A2J3030 131-1857-00 CONN.HDR.PCB,MALE,STR.2 X 25.0.1 CTR 58050 082-3644-SS10 A2PS2030 119-2370-00 CONVERTER.DC - AC,15V IN,80V AT 400 HZ 63312 LPS15-1-2 A2C1020 151-1176-00 XSTR,PWR:MOS,P-CH;100V,1.0A.0.6 OHM 04713 IRFD9120 A2C1020 151-1176-00 XSTR,PWR:MOS,P-CH;100V,1.0A.0.6 OHM 04713 IRFD9120 A2C1030 151-1176-00 XSTR,PWR:MOS,P-CH;100V,1.0A.0.6 OHM 17856 VN0606L-TA A2R1010 322-3385-00 RES,FXD,FILM:5K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321-0816-00 RES,FXD,FILM:5K OHM,1%,0.2W 5766 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 5766 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 5766 CRB20 FXE 100E A2R1013 311-1337-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 5766 CRB20 FXE 100E A2R1023 322-3097-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 5766 CRB20 FXE 100E A2R1023 322-3097-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 5766 CRB20 FXE 100E A2R1023 322-3385-00 RES,FXD,METAL,FILM:100K OHM,1%,0.2W 5766 CRB20 FXE 100K RES,FXD,METAL,FILM | A2C3023 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2C3032 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3033 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP,FXD,CER DIMLC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2L3030 131-1857-00 CONN,HDR:PCB,MALE,STR,2 X 25,0.1 CTR 22526 66506-032 A2L30300 131-1857-00 CONN,HDR:PCB,MALE,STR,1 X 36,0.1 CTR 58050 082-3644-SS10 A2PS2030 119-2370-00 CONVERTER.DC - AC,15V IN,80V AT 400 HZ 63312 LPS15-1-2 A2C01020 151-1176-00 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2C01030 151-1176-00 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2C02020 151-1121-01 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2C02020 151-1121-01 XSTR,PWR:MOS,N-CH,60V,0.5A,3.0 OHM 17856 VN0606L-TA A2R1010 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321-0816-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 322-3397-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322-3395-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1023 322-3395-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1023 322-3385-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322-3385-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322-3385-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A | A2C3030 | 290-0919-00 | | | | CAP,FXD,ELCTLT:470UF,+50-20%,35V AL | 1W344 | KME35VB471M10X20LI | | A2C3033 281-0925-01 CAP,FXD,CER DIMILC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2C3034 281-0925-01 CAP,FXD,CER DIMILC,0.22UF,20%,50V,ZRU 31433 C114C224M5Y5CA A2J1020 131-3147-00 CONN,HDR-PCB,MALE,STR,2 X 25,0.1 CTR 22526 66506-032 A2J3030 131-1857-00 CONN,HDR-PCB,MALE,STR,1 X 36,0.1 CTR 58050 082-3644-SS10 A2PS2030 119-2370-00 CONVERTER.DC - AC,15V IN,80V AT 400 HZ 63312 LPS15-1-2 A2C01020 151-1176-00 XSTR,PWR-MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q1030 151-1176-00 XSTR,PWR-MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q1030 151-1121-01 XSTR,PWR-MOS,P-CH:100V,1.0A,0.6 OHM 17856 VN0606L-TA A2R1010 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321-0816-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 91637 CCF50-2-G40201F A2R1018 311-1337-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1019 322-3385-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1020 322-3097-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322-3385-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322-3385-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100K A2R1022 311-2400-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100K A2R1023 322-3385-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100K A2R1023 322-3385-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100K A2R1024 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1020 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2C3031 | 290-0919-00 | | | | CAP,FXD,ELCTLT:470UF,+50-20%,35V AL | 1W344 | KME35VB471M10X20LL | | A2Z1020 131–3147-00
CONN,HDR:PCB,MALE,STR,2 X 25,0.1 CTR 22526 66506-032 A2J3030 131–1857-00 CONN,HDR:PCB,MALE,STR,1 X 36,0.1 CTR 58050 082–3644–SS10 A2PS2030 119–2370-00 CONVERTER:DC – AC,15V IN,80V AT 400 HZ 63312 LPS15–1–2 A2Q1020 151–1176-00 XSTR,PWR:MOS,P-CH:100V,1,0A,0.6 OHM 04713 IRFD9120 A2Q1030 151–1176-00 XSTR,PWR:MOS,P-CH:100V,1,0A,0.6 OHM 04713 IRFD9120 A2Q1030 151–1176-00 XSTR,PWR:MOS,P-CH:100V,1,0A,0.6 OHM 04713 IRFD9120 A2Q1030 151–1121-01 XSTR,PWR:MOS,P-CH:100V,1,0A,0.6 OHM 04713 IRFD9120 A2Q2020 151–1121-01 XSTR,PWR:MOS,P-CH:100V,0,5A,3.0 OHM 17856 VN0606L-TA A2R1010 322–3385-00 RES,FXD.FILM:5K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1011 321-0816-00 RES,FXD.FILM:5K OHM,1%,0.125W 91637 CCF50–2-G40201F A2R1013 322–3347-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 91637 CCF50–2-G40201F A2R1018 311–1337-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CR820 FXE 100E A2R1019 322–3385-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CR820 FXE 100E A2R1021 322-3385-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CR820 FXE 100E A2R1021 322-3385-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CR820 FXE 100E A2R1022 310-2400-00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CR820 FXE 100K A2R1022 312-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1023 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1024 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1024 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1027 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1023 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1023 322-3385-00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CR820 FXE 100K A2R1031 322-3385-00 | A2C3032 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2J1020 131–3147–00 CONN,HDR-PCB,MALE,STR,2 X 25,0.1 CTR 22526 66506–032 A2J3030 131–1857–00 CONN,HDR-PCB,MALE,STR,1 X 36,0.1 CTR 58050 082–3644–SS10 A2PS2030 119–2370–00 CONVERTER:DC – AC,15V IN,80V AT 400 HZ 63312 LPS15–1–2 A2Q1020 151–1176–00 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q1030 151–1176–00 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q2020 151–1121–01 XSTR,PWR:MOS,P-CH:00V,0.5A,3.0 OHM 17856 VN0606L-TA A2R1010 322–3385–00 RES,FXD.FILM:5K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321–0816–00 RES,FXD.FILM:5K OHM,1%,0.125W 01121 ADVISE A2R1012 322–3097–00 RES,FXD.FILM:40.2K OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 311–1337–00 RES,FXD.FILM:40.2K OHM,1%,0.2W 91637 CCF50–2–G40201F A2R1021 322–3097–00 RES,FXD.FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322–3097–00 RES,FXD.FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322–3385–00 RES,FXD.FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1022 322–3395–00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1023 322–3385–00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1024 322–3385–00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD.METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1023 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1023 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1023 322–3385–00 RES,FXD.METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD.METAL FILM:100K OHM, | A2C3033 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | AZJ3030 131–1857–00 CONN,HDR:PCB,MALE,STR,1 X 36,0.1 CTR 58050 082–3644–SS10 AZPS2030 119–2370–00 CONVERTER:DC – AC,15V IN,80V AT 400 HZ 63312 LPS15–1–2 AZQ1020 151–1176–00 XSTR,PWR:MOS,P–CH;100V,1.0A,0.6 OHM 04713 IRFD9120 AZQ1030 151–1176–00 XSTR,PWR:MOS,P–CH;100V,1.0A,0.6 OHM 04713 IRFD9120 AZQ2020 151–1121–01 XSTR,PWR:MOS,N–CH,60V,0.5A,3.0 OHM 17856 VN0606L–TA AZR1010 322–3385–00 RES,FXD,FILM:5K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1011 321–0816–00 RES,FXD,FILM:5K OHM,1%,0.125W 01121 ADVISE AZR1012 322–3347–00 RES,FXD,FILM:5K OHM,1%,0.2W 5768 CRB20 FXE 100E AZR1013 322–3347–00 RES,FXD,FILM:40,2K OHM,1%,0.2W 91637 CCF50–2-G40201F AZR1021 322–3347–00 RES,FXD,FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E AZR1023 322–3347–00 RES,FXD,FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E AZR1024 322–3385–00 RES,FXD,FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E AZR1025 311–2400–00 RES,FXD,FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1026 322–3385–00 RES,FXD,FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1027 322–3385–00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1026 322–3385–00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1027 322–3385–00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1027 322–3385–00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1027 322–3385–00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1027 322–3385–00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1027 322–3385–00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1027 322–3385–00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1030 322–3385–00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K AZR1031 322–3059–00 RES,FXD,FILM:40.2 OHM.1%,0.2W 57668 CRB20 FXE 100K AZR1031 322–3059–00 RES,FXD,FILM:40.2 OHM.1%,0.2W 57668 CRB20 FXE 100K | A2C3034 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V,ZRU | 31433 | C114C224M5Y5CA | | A2PS2030 119-2370-00 CONVERTER:DC - AC,15V IN,80V AT 400 HZ 63312 LPS15-1-2 A2Q1020 151-1176-00 XSTR,PWR:MOS,P-CH;100V;1.0A,0.6 OHM 04713 IRFD9120 A2Q1030 151-1176-00 XSTR,PWR:MOS,P-CH;100V;1.0A,0.6 OHM 04713 IRFD9120 A2Q2020 151-1121-01 XSTR,PWR:MOS,P-CH;100V;0.5A,3.0 OHM 17856 VN0606L-TA A2R1010 322-3385-00 RES,FXD,FILM:5K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321-0816-00 RES,FXD,FILM:5K OHM,1%,0.125W 01121 ADVISE A2R1012 322-3097-00 RES,FXD,FILM:5K OHM,1%,0.02W 5768 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50-2-G40201F A2R1018 311-1337-00 RES,FXD,FILM:100 OHM,1%,0.2W 91637 CCF50-2-G40201F A2R1021 322-3385-00 RES,FXD,FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1022 322-3385-00 RES,FXD,FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A2R1023 322-3385-00 RES,FXD,FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322-3385-00 RES,FXD,FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322-3385-00 RES,FXD,METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322-3385-00 RES,FXD,FILM:40.2 OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322-3385-00 RES,FXD,FILM:40.2 OHM,1%,0.2W 57668 CRB20 FXE 100K | A2J1020 | 131–3147–00 | | | | CONN,HDR:PCB,MALE,STR,2 X 25,0.1 CTR | 22526 | 66506-032 | | A2Q1020 151–1176–00 XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q1030 151–1176–00 XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q2020 151–1121–01 XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q2020 151–1121–01 XSTR,PWR:MOS,N-CH,60V,0.5A,3.0 OHM 17856 VN0606L-TA A2R1010 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321–0816–00 RES,FXD.FILM:5K OHM,1%,0.125W 01121 ADVISE A2R1012 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 322–3347–00 RES,FXD.FILM:40.2K OHM,1%,0.2W 91637 CCF50–2–G40201F A2R1018 311–1337–00 RES,VAR,NONWW:TRMR,25K OHM,0.5W CERMET 02111 43P253T672 A2R1020 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322–3385–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 57668 CRB20 FXE 100E A2R1022 311–2400–00 RES,VAR,PLASTIC:DUAL 10K,10% NO STOPS 12697 CM45241 A2R1023 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031
322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2J3030 | 131–1857–00 | | | | CONN,HDR:PCB,MALE,STR,1 X 36,0.1 CTR | 58050 | 082-3644-SS10 | | A2Q1030 151-1176-00 XSTR,PWR:MOS,P-CH:100V,1.0A,0.6 OHM 04713 IRFD9120 A2Q2020 151-1121-01 XSTR,PWR:MOS,N-CH;60V,0.5A,3.0 OHM 17856 VN0606L-TA A2R1010 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321-0816-00 RES,FXD;METAL FILM:100 OHM,1%,0.125W 01121 ADVISE A2R1012 322-3097-00 RES,FXD;METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD;FILM:40.2K OHM,1%,0.2W 91637 CCF50-2-G40201F A2R1018 311-1337-00 RES,FXD;METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1020 322-3097-00 RES,FXD;METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1022 311-2400-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1023 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1021 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1021 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322-3385-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322-3059-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322-3059-00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2PS2030 | 119–2370–00 | | | | CONVERTER:DC – AC,15V IN,80V AT 400 HZ | 63312 | LPS15-1-2 | | A2Q2020 151–1121–01 XSTR,PWR:MOS,N–CH,60V,0.5A,3.0 OHM 17856 VN0606L–TA A2R1010 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321–0816–00 RES,FXD;HLM:5K OHM,1%,0.125W 01121 ADVISE A2R1012 322–3097–00 RES,FXD;HLM:40.2K OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 322–3347–00 RES,FXD;HLM:40.2K OHM,1%,0.2W 91637 CCF50–2–G40201F A2R1018 311–1337–00 RES,VAR,NONWW:TRMR,25K OHM,0.5W CERMET 02111 43P253T672 A2R1020 322–3097–00 RES,FXD;METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1022 311–2400–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1023 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD;METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2Q1020 | 151–1176–00 | | | | XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM | 04713 | IRFD9120 | | A2R1010 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1011 321–0816–00 RES,FXD;FILM:5K OHM,1%,0.125W 01121 ADVISE A2R1012 322–3097–00 RES,FXD;FILM:40.2K OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 322–3347–00 RES,FXD;FILM:40.2K OHM,1%,0.2W 91637 CCF50–2–G40201F A2R1018 311–1337–00 RES,VAR,NONWW:TRMR,25K OHM,0.5W CERMET 02111 43P253T672 A2R1020 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1022 311–2400–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1023 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 | A2Q1030 | 151–1176–00 | | | | XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM | 04713 | IRFD9120 | | A2R1011 321-0816-00 RES,FXD,FILM:5K OHM,1%,0.125W 01121 ADVISE A2R1012 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD;FILM:40.2K OHM,1%,0.2W 91637 CCF50-2-G40201F A2R1018 311-1337-00 RES,VAR,NONWW:TRMR,25K OHM,0.5W CERMET 02111 43P253T672 A2R1020 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1022 311-2400-00 RES,VAR,PLASTIC:DUAL 10K,10% NO STOPS 12697 CM45241 A2R1023 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322-3059-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2Q2020 | 151–1121–01 | | | | XSTR,PWR:MOS,N-CH,60V,0.5A,3.0 OHM | 17856 | VN0606L-TA | | A2R1012 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1013 322-3347-00 RES,FXD;FILM:40.2K OHM,1%,0.2W 91637 CCF50-2-G40201F A2R1018 311-1337-00 RES,VAR,NONWW:TRMR,25K OHM,0.5W CERMET 02111 43P253T672 A2R1020 322-3097-00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1022 311-2400-00 RES,VAR,PLASTIC:DUAL 10K,10% NO STOPS 12697 CM45241 A2R1023 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322-3385-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322-3059-00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2R1010 | 322–3385–00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R1013 322–3347–00 RES,FXD,FILM:40.2K OHM,1%,0.2W 91637 CCF50–2–G40201F A2R1018 311–1337–00 RES,VAR,NONWW:TRMR,25K OHM,0.5W CERMET 02111 43P253T672 A2R1020 322–3397–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1022 311–2400–00 RES,VAR,PLASTIC:DUAL 10K,10% NO STOPS 12697 CM45241 A2R1023 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00
RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2R1011 | 321-0816-00 | | | | RES,FXD,FILM:5K OHM,1%,0.125W | 01121 | ADVISE | | A2R1018 311–1337–00 RES,VAR,NONWW:TRMR,25K OHM,0.5W CERMET 02111 43P253T672 A2R1020 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1022 311–2400–00 RES,VAR,PLASTIC:DUAL 10K,10% NO STOPS 12697 CM45241 A2R1023 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2R1012 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 5768 | CRB20 FXE 100E | | A2R1020 322–3097–00 RES,FXD:METAL FILM:100 OHM,1%,0.2W 5768 CRB20 FXE 100E A2R1021 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1022 311–2400–00 RES,VAR,PLASTIC:DUAL 10K,10% NO STOPS 12697 CM45241 A2R1023 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD;FILM:40.2 OHM,1%,0.2W 91637 CCF50–2G40R020FT | A2R1013 | 322-3347-00 | | | | RES,FXD,FILM:40.2K OHM,1%,0.2W | 91637 | CCF50-2-G40201F | | A2R1021 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1022 311–2400–00 RES,VAR,PLASTIC:DUAL 10K,10% NO STOPS 12697 CM45241 A2R1023 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2R1018 | 311–1337–00 | | | | RES,VAR,NONWW:TRMR,25K OHM,0.5W CERMET | 02111 | 43P253T672 | | A2R1022 311–2400–00 RES,VAR,PLASTIC:DUAL 10K,10% NO STOPS 12697 CM45241 A2R1023 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2R1020 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 5768 | CRB20 FXE 100E | | A2R1023 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1024 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 91637 CCF50–2G40R020FT | A2R1021 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R1024 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 91637 CCF50–2G40R020FT | A2R1022 | 311-2400-00 | | | | RES,VAR,PLASTIC:DUAL 10K,10% NO STOPS | 12697 | CM45241 | | A2R1025 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD;FILM:40.2 OHM,1%,0.2W 91637 CCF50–2G40R020FT | A2R1023 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R1026 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD,FILM:40.2 OHM,1%,0.2W 91637 CCF50–2G40R020FT | A2R1024 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R1027 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD,FILM:40.2 OHM,1%,0.2W 91637 CCF50–2G40R020FT | A2R1025 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R1030 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K A2R1031 322–3059–00 RES,FXD,FILM:40.2 OHM,1%,0.2W 91637 CCF50–2G40R020FT | A2R1026 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R1031 322–3059–00 RES,FXD,FILM:40.2 OHM,1%,0.2W 91637 CCF50–2G40R020FT | A2R1027 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | | A2R1030 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R2010 322–3385–00 RES,FXD:METAL FILM:100K OHM,1%,0.2W 57668 CRB20 FXE 100K | A2R1031 | 322-3059-00 | | | | RES,FXD,FILM:40.2 OHM,1%,0.2W | 91637 | CCF50-2G40R020FT | | | A2R2010 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|------------------| | A2R2020 | 322-3001-00 | | | | RES,FXD:METAL FILM:10 OHM,1%,0.2W | 57668 | CRB20 FXE 10E0 | | 2R2021 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R2022 | 321-0523-00 | | | | RES,FXD,FILM:2.74M OHM,1%,0.125W | 07716 | CEA 2.74 M OHM | | A2R2024 | 311-2400-00 | | | | RES, VAR, PLASTIC: DUAL 10K, 10% NO STOPS | 12697 | CM45241 | | A2R2030 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | 2R2031 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R2032 | 322-3347-00 | | | | RES,FXD,FILM:40.2K OHM,1%,0.2W | 91637 | CCF50-2-G40201F | | 2R2034 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | 2R2035 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | 2R2036 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | 2R2037 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R3010 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R3011 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A2R3020 | 311-2400-00 | | | | RES, VAR, PLASTIC: DUAL 10K, 10% NO STOPS | 12697 | CM45241 | | A2R3024 | 307-0504-00 | | | | RES NTWK,FXD,FI:(15) 300K OHM,2%,0.125W | 01121 | 316A304 | | A2R3031 | 307-0504-00 | | | | RES NTWK,FXD,FI:(15) 300K OHM,2%,0.125W | 01121 | 316A304 | | A2RT2038 | 307-0751-00 | | | | RES,THERMAL:20K OHM,5% | 56866 | QTMC-19J | | N2S1010 | 260-2091-00 | | | | SWITCH,PUSH:1 BTN,1 POLE RECORD/SWEEP | 71590 | 2LL199NB021074 | | A2S1011 | 260-2091-00 | | | | SWITCH,PUSH:1 BTN,1 POLE RECORD/SWEEP | 71590 | 2LL199NB021074 | | A2S2010 | 260-2091-00 | | | | SWITCH,PUSH:1 BTN,1 POLE RECORD/SWEEP | 71590 | 2LL199NB021074 | | A2S2011 | 260-2091-00 | | | | SWITCH,PUSH:1 BTN,1 POLE RECORD/SWEEP | 71590 | 2LL199NB021074 | | A2S3010 | 260-2091-00 | | | | SWITCH,PUSH:1 BTN,1 POLE RECORD/SWEEP | 71590 | 2LL199NB021074 | | 2S3011 | 260-2286-01 | | | | SWITCH,ROTARY:IMPEDENCE STOP | 04426 | 47-012-0012 | | A2S3012 | 260-2269-01 | | | | SWITCH,ROTARY:NOISE PC MOUNT | 04426 | 47-012-0014 | | 2S3020 | 260-2368-01 | | | | SWITCH,ROTARY:HORIZONTAL SCALE | 80009 | 260-2368-01 | | 2S3021 | 260-2287-01 | | | | SWITCH,ROTARY:VP COURSE | 04426 | 47-012-0011 | | A2S3022 | 260-2269-01 | | | | SWITCH,ROTARY:NOISE PC MOUNT | 04426 | 47-012-0014 | | A2S3023 | 260-2369-01 | | | | SWITCH,ROTARY:PULSE WIDTH | 80009 | 260-2369-01 | | \2U2010 | 156-0853-00 | | | |
IC,LINEAR:BIPOLAR,OP-AMP;DUAL | 18324 | NE532 | | A2U2020 | 156-1225-00 | | | | IC,LINEAR:BIPOLAR,COMPARATOR;DUAL | 04713 | LM393N | | 2U2021 | 156-1367-00 | | | | IC,CONVERTER:CMOS,D/A;8 BIT,400NS | 24355 | AD7524JN | | 2U2022 | 156-2463-00 | | | | IC,DIGTIAL:HCMOS,GATE;QUAD 2-INPUT OR | 01295 | SN74HC32N | | A2U2023 | 156-2589-00 | | | | IC,CONVERTER:TTL,A/D;8-BIT,100US,SAR | 80009 | 156-2589-00 | | 2U2024 | 156-2758-00 | | | | IC,DIGITAL:HCMOS,MUX/ENCODER;DUAL | 0JR04 | TC74HC253AP | | | | | | | | | | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|---------------------| | A2U3020 | 156-2026-00 | | | | IC,DIGITAL:HCMOS,GATE;QUAD 2-INPUT NOR | 04713 | MC74HC02AN | | A2U3021 | 156-2026-00 | | | | IC,DIGITAL:HCMOS,GATE;QUAD 2-INPUT NOR | 04713 | MC74HC02AN | | A2U3022 | 156-2026-00 | | | | IC,DIGITAL:HCMOS,GATE;QUAD 2-INPUT NOR | 04713 | MC74HC02AN | | A2U3023 | 156-2026-00 | | | | IC,DIGITAL:HCMOS,GATE;QUAD 2-INPUT NOR | 04713 | MC74HC02AN | | A2U3025 | 156-2758-00 | | | | IC,DIGITAL:HCMOS,MUX/ENCODER;DUAL | 0JR04 | TC74HC253AP | | A2U3031 | 156–2758–00 | | | | IC,DIGITAL:HCMOS,MUX/ENCODER;DUAL | 0JR04 | TC74HC253AP | | A3A1 | 670-9286-XX | | | | CIRCUIT BD ASSY:POWER SUPPLY | | | | | | | | | POWER SUPPLY ASSEMBLY - CHASSIS MNT ELEC
PARTS - SEE FIG. 10-4 RMPL | | | | A3A1C1010 | 290-0997-00 | | | | CAP,FXD,ELCTLT:3000UF,-10% +75%,75V | 24165 | 53D268 | | A3A1C1011 | 283-0220-02 | | | | CAP,FXD,CER DI:0.01UF,20%,50V | 04222 | AR205C103MAATRSTDII | | A3A1C1012 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V | 31433 | C322C102J2G5CA | | A3A1C1013 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V | 31433 | C114C224M5Y5CA | | A3A1C1014 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V | 31433 | C322C102J2G5CA | | A3A1C1015 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V | 31433 | C322C102J2G5CA | | A3A1C1016 | 283-0107-00 | | | | CAP,FXD,CER DI:51PF,5%,200V | 04222 | SR202A510JAA | | A3A1C1030 | 283-0059-02 | | | | CAP,FXD,CER DI:1UF,20%,50V | 04222 | SR305C105MAATRSTDII | | A3A1C1031 | 283-0059-02 | | | | CAP,FXD,CER DI:1UF,20%,50V | 04222 | SR305C105MAATRSTDII | | A3A1C1032 | 290-0536-04 | | | | CAP,FXD,ELCTLT:10UF,20%,25V | 24165 | 199D106X0025CA1 | | A3A1C1033 | 290-0536-04 | | | | CAP,FXD,ELCTLT:10UF,20%,25V | 24165 | 199D106X0025CA1 | | A3A1C1034 | 283-0177-00 | | | | CAP,FXD,CER DI:1UF,+80-20%,25V | 04222 | SR305E105ZAA | | A3A1C1035 | 283-0177-00 | | | | CAP,FXD,CER DI:1UF,+80-20%,25V | 04222 | SR305E105ZAA | | A3A1C1036 | 283-0177-00 | | | | CAP,FXD,CER DI:1UF,+80-20%,25V | 04222 | SR305E105ZAA | | A3A1C1037 | 290-0973-01 | | | | CAP,FXD,ELCTLT:100UF,20%,25VDC AL | 1W344 | SME35VB101M8X11FT | | A3A1C1038 | 283-0177-00 | | | | CAP,FXD,CER DI:1UF,+80-20%,25V | 04222 | SR305E105ZAA | | A3A1C2010 | 290-0973-01 | | | | CAP,FXD,ELCTLT:100UF,20%,25VDC AL | 1W344 | SME35VB101M8X11FT | | A3A1C2011 | 290-0517-00 | | | | CAP,FXD,ELCTLT:6.8UF,20%,35V | 24165 | 199D685X0035DA1 | | A3A1C2012 | 290-0973-01 | | | | CAP,FXD,ELCTLT:100UF,20%,25VDC AL | 1W344 | SME35VB101M8X11FT | | A3A1C2013 | 283-0198-00 | | | | CAP,FXD,CER DI:0.22UF,20%,50V | 04222 | SR305C224MAA | | A3A1C2020 | 283-0051-00 | | | | CAP,FXD,CER DI:0.0033UF,5%,100V | 04222 | SR301A332JAA | | A3A1C2021 | 290-0745-02 | | | | CAP,FXD,ELCTLT:22UF,+50-10%,25V,AL | 55680 | UVX2A220MPA | | A3A1C2022 | 283-0010-00 | | | | CAP,FXD,CER DI:0.05UF,+80-20%,50V | 04222 | SR305E503ZAA | | A3A1C2023 | 283-0220-02 | | | | CAP,FXD,CER DI:0.01UF,20%,50V | 04222 | AR205C103MAATRSTDII | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|--------------------| | A3A1C2024 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V | 31433 | C114C224M5Y5CA | | A3A1C2025 | 290-0846-00 | | | | CAP,FXD,ELCTLT:47UF,+75-20%,35V AL | 0J9R5 | CEUSM1J470 | | A3A1C2030 | 281-0925-01 | | | | CAP,FXD,CER DI:MLC,0.22UF,20%,50V | 31433 | C114C224M5Y5CA | | A3A1C2031 | 283-0059-02 | | | | CAP,FXD,CER DI:1UF,20%,50V | 04222 | SR305C105MAATRSTDI | | A3A1CR1010 | 152-0406-00 | | | | DIODE,RECT:BRIDGE,250V,3A,1.2VF | 14936 | GBPC604 | | A3A1CR1011 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 50434 | 5082–2672 | | A3A1CR1030 | 152-0582-00 | | | | DIODE,RECT:SCHTKY,20V,3A,.475VF,80A | 04713 | 1N5820 | | A3A1CR1031 | 152-0582-00 | | | | DIODE,RECT:SCHTKY,20V,3A,.475VF,80A | 04713 | 1N5820 | | A3A1CR1032 | 152-0581-00 | | | | DIODE,RECT:SCHTKY,20V,1A,.450VF,25A | 14936 | SB120-5 | | A3A1CR1033 | 152-0581-00 | | | | DIODE,RECT:SCHTKY,20V,1A,.450VF,25A | 14936 | SB120-5 | | A3A1CR1034 | 152-0779-00 | | | | DIODE,RECT:FAST RCVRY;BRIDGE,200V | 80009 | 152-0779-00 | | A3A1CR2010 | 152-0601-00 | | | | DIODE,RECT:ULTRA FAST;150V,25NS,35A | 04713 | MUR115 | | A3A1CR2011 | 152-1165-00 | | | | DIODE,RECT:600V,4A,50NS | 04713 | MUR460RL | | A3A1CR2012 | 152-0582-00 | | | | DIODE,RECT:SCHTKY,20V,3A,.475VF,80A | 04713 | 1N5820 | | A3A1CR2013 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 50434 | 5082-2672 | | A3A1CR2014 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 50434 | 5082-2672 | | A3A1CR2015 | 152-0836-00 | | | | DIODE DVC,DI:RECT,SI,1A,40V 1N5819 | 80009 | 152-0836-00 | | A3A1CR2016 | 152-0141-02 | | | | DIODE,SIG:ULTRA FAST;40V,150MA,4NS,2PF | 14433 | 1N4152 | | A3A1CR2020 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 50434 | 5082-2672 | | A3A1CR2021 | 152-0601-00 | | | | DIODE,RECT:ULTRA FAST;150V,25NS,35A | 04713 | MUR115 | | A3A1CR2030 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 12969 | NDP261 | | A3A1CR2031 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 12969 | NDP261 | | A3A1J1010 | 131–4177–00 | | | | CONN,HDR:PCB,MALE,STR,1 X 31,0.15 CTR | 80009 | 131-4177-00 | | A3A1J1030 | 131-3445-00 | | | | CONN,HDR:PCB,MALE,RTANG,2 X 7,0.1 CTR | 80009 | 131-3445-00 | | A3A1J2010 | 131–1857–00 | | | | CONN,HDR:PCB,MALE,STR,1 X 36,0.1 CTR | 58050 | 082-3644-SS10 | | A3A1L1010 | 108–1230–00 | | | | COIL,RF:FIXED,100UH,5% POT CORE | 54937 | 500–3990 | | A3A1L2020 | 108–1230–00 | | | | COIL,RF:FIXED,100UH,5% POT CORE | 54937 | 500–3990 | | A3A1Q1010 | 151–1176–00 | | | | XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM | 04713 | IRFD9120 | | A3A1Q1011 | 151-1176-00 | | | | XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM | 04713 | IRFD9120 | | A3A1Q1012 | 151-0736-00 | | | | XSTR:NPN,SI,TO-92 2N4401 | 04713 | 2N4401 | | A3A1Q2010 | 151-0736-00 | | | | XSTR:NPN,SI,TO-92 2N4401 | 04713 | 2N4401 | | A3A1Q2011 | 151-1176-00 | | | | XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM | 04713 | IRFD9120 | | A3A1Q2012 | 151-1176-00 | | | | XSTR,PWR:MOS,P-CH;100V,1.0A,0.6 OHM | 04713 | IRFD9120 | | A3A1Q2020 | 151-0188-00 | | | | XSTR,SIG:BIPOLAR,PNP;40V,200MA,250MHZ,AMP | 03508 | X39H3162 | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|--------------------------------------|--------------|------------------| | A3A1Q2021 | 151-0424-00 | | | ; | XSTR:NPN,SI,TO-92 MPS2369A | 04713 | MPS2369A | | A3A1Q2022 | 151-1136-00 | | | | XSTR,PWR:MOS,N-CH;100V,14A,0.16 OHM | 04713 | MTP12N10E | | A3A1Q2030 | 151-1063-00 | | | | XSTR,PWR:MOS,N-CH;60V,0.8A,0.8 OHM | 04713 | IRFD113 | | A3A1Q2031 | 151–1063–00 | | | | XSTR,PWR:MOS,N-CH;60V,0.8A,0.8 OHM | 04713 | IRFD113 | | A3A1R1010 | 308-0839-00 | | | | RES,FXD:0.1 OHM,5%,1.0W MI | 56637 | BW1 0.1 OHM | | A3A1R1011 | 322-3193-00 | | | | RES,FXD:METAL FILM:1K OHM,1%,0.2W | 57668 | CRB20 FXE 1K00 | | A3A1R1012 | 322-3222-00 | | | | RES,FXD:METAL FILM:2K OHM,1%,0.2W | 57668 | CRB20 FXE 2K00 | | A3A1R1013 | 322-3309-00 | | | | RES,FXD,FILM:16.2K OHM,1%,0.2W | 91637 | CCF50-2-G16201FT | | A3A1R1014 | 322-3243-00 | | | | RES,FXD:METAL FILM:3.32K OHM,1%,0.2W | 91637 | CCF50-1-G3200F | | A3A1R1015 | 322-3231-00 | | | | RES,FXD,FILM:2.49K OHM,1%,0.2W | 57668 | CRB20 FXE 2K49 | | A3A1R1016 | 322-3303-00 | | | | RES,FXD,FILM:14K OHM,1%,0.2W | 57668 | CRB20 FXE 14K0 | | A3A1R1017 | 322-3243-00 | | | | RES,FXD:METAL FILM:3.32K OHM,1%,0.2W | 91637 | CCF50-1-G3200F | | A3A1R1018 | 322-3318-00 | | | | RES,FXD:METAL FILM:20K OHM,1%,0.2W | 57668 | CRB20 FXE 20K0 | | A3A1R1020 | 322-3189-00 | | | | RES,FXD,FILM:909 OHM,1%,0.2W | 57668 | CRB20 FXE 909E | | A3A1R1021 | 322-3293-00 | | | | RES,FXD,FILM:11K OHM,1%,0.2W | 57668 | CRB20 FXE 11K0 | | A3A1R1022 | 322-3191-00 | | | | RES,FXD,FILM:953 OHM,1%,0.2W | 57668 | CRB20 FXE 953E | | A3A1R1023 | 322-3235-00 | | | | RES,FXD:METAL FILM:2.74K OHM,1%,0.2W | 57668 | CRB20 FXE 2K74 | | A3A1R1024 | 322-3231-00 | | | | RES,FXD,FILM:2.49K OHM,1%,0.2W | 57668 | CRB20 FXE 2K49 | | A3A1R1025 | 321-0302-00 | | | | RES,FXD,FILM:13.7K OHM,1%,0.125W | 57668 | CRB20 FXE 13K7 | | A3A1R1026 | 322-3193-00 | | | | RES,FXD:METAL FILM:1K OHM,1%,0.2W | 57668 | CRB20 FXE 1K00 | | A3A1R1030 | 317-0027-00 | | | | RES,FXD,CMPSN:2.7 OHM,5%,0.125W | 01121 | BB27G5 | | A3A1R2010 | 322-3257-00 | | | | RES,FXD,FILM:4.64K OHM,1%,0.2W | 91637 | CCF50-2-G46400FT | | A3A1R2011 | 322-3300-02 | | | | RES,FXD,FILM:13K OHM,1%,0.2W | 57668 | CRB20 DYE 13K0 | | A3A1R2012 | 308-0739-00 | | | | RES,FXD,WW:4 OHM,1%,3W | 01686 | T2B-79-4 | | A3A1R2013 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A3A1R2014 | 322-3357-00 | | | | RES,FXD,FILM:51.1K OHM,1%,0.2W | 57668 | CRB20 FXE 51K1 | | A3A1R2015 | 322-3289-00 | | | | RES,FXD:METAL FILM:10K
OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A3A1R2016 | 322-3097-00 | | | | RES,FXD:METAL FILM:100 OHM,1%,0.2W | 57668 | CRB20 FXE 100E | | A3A1R2017 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A3A1R2018 | 322-3385-00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A3A1R2020 | 321-0253-00 | | | | RES,FXD,FILM:4.22K OHM,1%,0.125W | 19701 | 5033ED 4K 220F | | A3A1R2021 | 322-3222-00 | | | | RES,FXD:METAL FILM:2K OHM,1%,0.2W | 57668 | CRB20 FXE 2K00 | | A3A1R2022 | 322-3193-00 | | | | RES,FXD:METAL FILM:1K OHM,1%,0.2W | 57668 | CRB20 FXE 1K00 | | A3A1R2023 | 322-3261-00 | | | | RES,FXD,FILM:5.11K OHM,1%,0.2W | 91637 | CCF50G5111FT | | A3A1R2024 | 322-3239-00 | | | | RES,FXD,FILM:3.01K OHM,1%,0.2W | 57668 | CRB20 FXE 3K01 | | A3A1R2025 | 322-3239-00 | | | | RES,FXD,FILM:3.01K OHM,1%,0.2W | 57668 | CRB20 FXE 3K01 | | A3A1R2026 | 322-3289-00 | | | | RES,FXD:METAL FILM:10K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|-------------------| | A3A1R2027 | 308-0839-00 | | | | RES,FXD:0.1 OHM,5%,1.0W MI | 56637 | BW1 0.1 OHM | | A3A1R2030 | 322-3326-00 | | | | RES,FXD,FILM:24.3K OHM,1%,0.2W | 91637 | CCF50-2F24301F | | A3A1R2031 | 317-0027-00 | | | | RES,FXD,CMPSN:2.7 OHM,5%,0.125W | 01121 | BB27G5 | | A3A1R2032 | 308-0767-00 | | | | RES,FXD:1.1 OHM,5%,1W MI | 75042 | SP-20-1.1 OHM -5% | | A3A1S2010 | 260–2370–00 | | | | SWITCH,TOGGLE:SPDT,3A,250VAC | 80009 | 260-2370-00 | | A3A1T1030 | 120-1608-00 | | | | XFMR,PWR:SW,40KHZ,IN 16.2V,OUT +/-15V 34MA | 0JR03 | 120–1608–00 | | A3A1T1031 | 120-0487-00 | | | | XFMR,TOROID:5 TURNS,BIFILAR,3T2 | 0JR03 | 120-0487-00 | | A3A1TP1010 | 214-0579-02 | B020000 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A3A1TP1020 | 214-0579-02 | B020000 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A3A1TP2010 | 214-0579-02 | B020000 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A3A1TP2030 | 214-0579-02 | B020000 | B023052 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | A3A1U1010 | 156-0933-00 | | | | IC,LINEAR:REGULATOR,PULSE WIDTH | 34333 | SG3524N | | 3A1U1011 | 156-1173-00 | | | | IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% | 04713 | MC1403U | | 3A1U1020 | 156-1225-00 | | | | IC,LINEAR:BIPOLAR,COMPARATOR;DUAL | 04713 | LM393N | | A3A1U1021 | 156-1225-00 | | | | IC,LINEAR:BIPOLAR,COMPARATOR;DUAL | 04713 | LM393N | | 3A1U1022 | 156-1173-00 | | | | IC,LINEAR:BIPOLAR,VOLT REF;POS,2.5V,1.0% | 04713 | MC1403U | | A3A1U1023 | 156-0933-00 | | | | IC,LINEAR:REGULATOR,PULSE WIDTH | 34333 | SG3524N | | 3A1U1024 | 156-0366-00 | | | | IC,DIGITAL:CMOS,FLIP FLOP;DUAL D-TYPE | 04713 | MC14013BCP | | A3A1U2010 | 156-1161-00 | | | | IC,LINEAR:BIPOLAR,VOLT REG;POS,ADJ | 04713 | LM317T | | \3A1U2030 | 156-0494-00 | | | | IC,DIGITAL:CMOS,BUFFER/DRIVER;HEX INV | 04713 | MC14049UBCP | | A3A1VR1012 | 152-0217-00 | | | | DIODE,ZENER:8.2V,5%,0.4W | 14552 | TD3810979 | | | | | | | | | | | A 4 | 670-9290-XX | | | | CKT BD ASSY:L/R PULSER SAMPLER | | | | A4C1040 | 283-0845-00 | | | | CAP,FXD,MICA:3600PF,500V | 00853 | D195E362GO | | 4C1060 | 290-0523-00 | B010100 | B020257 | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | | 290-0536-00 | B020258 | | | CAP,FXD,ELCTLT:10UF,20%,25V TANTALUM | 24165 | 199D106X0025CA1 | | 4C1061 | 290-0523-00 | B010100 | B020257 | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | | 290-0536-00 | B020258 | | | CAP,FXD,ELCTLT:10UF,20%,25V TANTALUM | 24165 | 199D106X0025CA1 | | 4C1062 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | 4C1063 | 290-0523-00 | | | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|------------------| | A4C1064 | 285-0627-00 | | | | CAP,FXD,PLASTIC:0.0033UF,5%,100V MI | 01002 | 61F10AC332 | | A4C1065 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A4C1066 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A4C1070 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C1080 | 290-0782-00 | | | | CAP,FXD,ELCTLT:4.7UF,+75-20%,35VDC AL | 55680 | UVX1V4R7MAA | | A4C1081 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C1082 | 283-0330-00 | | | | CAP,FXD,CER DI:100PF,5%,50V SQ | 16546 | CN15C101J | | A4C1083 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C1084 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C1085 | 283-0154-00 | | | | CAP,FXD,CER DI:22PF,5%,50V SQ | 04222 | SR155A220JAA | | A4C1090 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C1091 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C2013 | 283-0203-00 | | | | CAP,FXD,CER DI:0.47UF,20%,50V SQ | 04222 | SR305SC474MAA | | A4C2014 | 283-0203-00 | | | | CAP,FXD,CER DI:0.47UF,20%,50V SQ | 04222 | SR305SC474MAA | | A4C2015 | 283-0203-00 | | | | CAP,FXD,CER DI:0.47UF,20%,50V SQ | 04222 | SR305SC474MAA | | A4C2020 | 290-0536-00 | | | | CAP,FXD,ELCTLT:10UF,20%,25V TANTALUM | 24165 | 199D106X0025CA1 | | A4C2021 | 283-0203-00 | | | | CAP,FXD,CER DI:0.47UF,20%,50V SQ | 04222 | SR305SC474MAA | | A4C2022 | 283-0203-00 | | | | CAP,FXD,CER DI:0.47UF,20%,50V SQ | 04222 | SR305SC474MAA | | A4C2023 | 283-0203-00 | | | | CAP,FXD,CER DI:0.47UF,20%,50V SQ | 04222 | SR305SC474MAA | | A4C2030 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C2040 | 283-0175-00 | | | | CAP,FXD,CER DI:10PF,5%,200V SQ | 04222 | ADVISE | | A4C2041 | 283-0670-00 | | | | CAP,FXD,MICA DI:375PF,1%,500V | 00853 | D155F3750F0 | | A4C2042 | 283-0743-00 | | | | CAP,FXD,MICA DI:43PF,2%,500V | 00853 | D105E430G0 | | A4C2043 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C2050 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C2051 | 290-0523-00 | | | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | A4C2060 | 281-0851-00 | | | | CAP,FXD,CER DI:180PF,5%,100VDC TUBULAR | 04222 | SA101A181JAA | | A4C2070 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C2071 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C2072 | 290-0536-00 | | | | CAP,FXD,ELCTLT:10UF,20%,25V TANTALUM | 24165 | 199D106X0025CA1 | | A4C2073 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C2080 | 283-0779-00 | | | | CAP,FXD,MICA DI:27 PF,2%,500V | 00853 | D155E270G0 | | A4C2081 | 283-0139-00 | | | | CAP,FXD,CER DI:150PF,20%,50V SQ | 18796 | RPE110COG151K50V | | A4C2090 | 283-0779-00 | | | | CAP,FXD,MICA DI:27 PF,2%,500V | 00853 | D155E270G0 | | A4C3010 | 283-0417-00 | | | | CAP,FXD,CER DI:0.22UF,20%,400V SQ | 04222 | SR501E224MAA | | A4C3011 | 283-0417-00 | | | | CAP,FXD,CER DI:0.22UF,20%,400V SQ | 04222 | SR501E224MAA | | A4C3020 | 283-0203-00 | | | | CAP,FXD,CER DI:0.47UF,20%,50V SQ | 04222 | SR305SC474MAA | | A4C3021 | 283-0190-00 | | | | CAP,FXD,CER DI:0.47UF,5%,50V SQ | 04222 | SR305C474JAA | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|----------------------| | A4C3030 | 283-0024-03 | B020000 | B023755 | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | | 283-0328-00 | B023756 | | | CAP,FXD,CER DI:0.033UF,+80-20%,200V | 18796 | RPE122166Z5U303Z200V | | A4C3031 | 283-0024-03 | B020000 | B023755 | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | | 283-0328-00 | B023756 | | | CAP,FXD,CER DI:0.033UF,+80-20%,200V | 18796 | RPE122166Z5U303Z200V | | A4C3032 | 290-0536-00 | | | | CAP,FXD,ELCTLT:10UF,20%,25V TANTALUM | 24165 | 199D106X0025CA1 | | A4C3033 | 290-0536-00 | | | | CAP,FXD,ELCTLT:10UF,20%,25V TANTALUM | 24165 | 199D106X0025CA1 | | A4C3034 | 283-0359-01 | | | | CAP,FXD,CER DI:1000PF,5%,200V SQ | 31433 | C322C102J2G5CA | | A4C3040 | 283-0203-00 | | | | CAP,FXD,CER DI:0.47UF,20%,50V SQ | 04222 | SR305SC474MAA | | A4C3050 | 290-0536-00 | | | | CAP,FXD,ELCTLT:10UF,20%,25V TANTALUM | 24165 | 199D106X0025CA1 | | A4C3051 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C3052 | 283-0156-00 | | | | CAP,FXD,CER DI:1000PF,+80-20%,200V SQ | 04222 | SR152E102ZAA | | A4C3060 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C3061 | 283-0175-00 | | | | CAP,FXD,CER DI:10PF,5%,200V SQ | 31433 | C315C100D2G5CA | | A4C3062 | 283-0175-00 | | | | CAP,FXD,CER DI:10PF,5%,200V SQ | 31433 | C315C100D2G5CA | | A4C3063 | 283-0196-00 | | | | CAP,FXD,CER DI:270PF,10%,50V | 16299 | SR155C271KAA | | A4C3064 | 290-0523-00 | | | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | A4C3065 | 283-0175-00 | | | | CAP,FXD,CER DI:10PF,5%,200V SQ | 31433 | C315C100D2G5CA | | A4C3070 | 283-0196-00 | | | | CAP,FXD,CER DI:270PF,10%,50V | 16299 | SR155C271KAA | | A4C3071 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V |
04222 | SR215E104ZAATR | | A4C3072 | 283-0024-03 | | | | CAP,FXD,CER DI:0.1UF,+80-20%,50V | 04222 | SR215E104ZAATR | | A4C3080 | 283-0196-00 | B020000 | B025371 | | CAP,FXD,CER DI:270PF,10%,50V | 16299 | SR155C271KAA | | | 283-0107-01 | B025372 | | | CAP,FXD,CER DI:51PF,5%,200V | 04222 | SR292A510JAA | | A4C3081 | 283-0196-00 | B020000 | B025371 | | CAP,FXD,CER DI:270PF,10%,50V | 16299 | SR155C271KAA | | | 283-0107-01 | B025372 | | | CAP,FXD,CER DI:51PF,5%,200V | 04222 | SR292A510JAA | | A4C3082 | 283-0139-00 | | | | CAP,FXD,CER DI:150PF,20%,50V SQ | 18796 | RPE110COG151K50V | | A4CR1010 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 03508 | DJ2011 | | A4CR1030 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 03508 | DJ2011 | | A4CR1031 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 03508 | DJ2011 | | A4CR2050 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A4CR2060 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 03508 | DJ2011 | | A4CR2061 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 03508 | DJ2011 | | A4CR2062 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 03508 | DJ2011 | | A4CR2063 | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | A4CR3020 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 03508 | DJ2011 | | A4CR3021 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 03508 | DJ2011 | | A4CR3040 | 152-0503-00 | | | | DIODE,SIG:SRD;35V,500PS TS,250NS TL,4.65PF | 28480 | 5082-8872 | | | 152-0322-00 | | | | DIODE DVC,DI:SCHOTTKY,SI,15V,1.2PF | 21847 | A2X600 | | AAU3010 131-0391-00 CONN.RF.JACK.MALE 24931 32JR105-1 A4J3040 131-3360-00 CONN.HDR.PCB.MALE.STR.2 X 10 53387 3592-6002 A4L1040 108-1277-00 COIL.RF.80UH.5%.INDUCTOR 54937 108-1277-00 A4L2040 108-1278-00 COIL.RF.55.UH.5%.INDUCTOR 0JR03 Z611 A4L2041 108-1279-00 COIL.RF.55.UH.5%.INDUCTOR 0JR03 Z612 A4L1040 151-0190-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.300MHZ.AMP 01295 SKA3703 A4Q1020 151-0567-00 XSTR.SIG.MOS.N-C.HE.NH.60V.200MA.5 OHM 04713 2N7000 A4Q1021 151-0567-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.3 OHM 04713 2N7000 A4Q1021 151-0567-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.3 OHM 04713 2N7000 A4Q1030 151-0190-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.3 OHM 04713 2N7000 A4Q1031 151-0190-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.3 OHM 04713 2N7000 A4Q2011 151-0567-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.3 OHM 04713 2N7000 A4Q2011 151-0567-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.5 OHM 04713 2N7000 A4Q2011 151-0567-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.5 OHM 04713 2N7000 A4Q2012 151-0567-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.5 OHM 04713 2N7000 A4Q2013 151-0188-00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.5 OHM 04713 2N7000 A4Q2030 151-0188-00 XSTR.SIG.BIPOLAR.NPN.10V.200MA.5 OHM 04713 2N7000 A4Q2031 151-0188-00 XSTR.SIG.BIPOLAR.NPN.10V.200MA.2 OHLZ.MMP 03508 X39H3162 A4Q2031 151-0448-00 B02000 B023755 XSTR.NPN.SIT.O-46 2N5836 FAMILY 04713 SRF504 A4Q2031 151-0448-00 B02000 B023755 XSTR.NPN.SIT.O-46 2N5836 FAMILY 04713 SNF501 151-0965-00 B024252 XSTR.SIG.BIPOLAR.NPN.15V.75MA.4.5GHZ.AMP 01295 SKA4504 XSTR.SIG.BIPOLAR.NPN.15V.75MA.5.GHZ.AMP 01295 SKA4504 XSTR.SIG.BIPOLAR.NPN.15V.75MA.4.5GHZ.AMP 01295 SKA4504 XSTR.SIG.BIPOLAR.NPN.15V.75MA.4.5GHZ.AMP 01295 SKA4504 XSTR.SIG.BIPOLAR.NPN.15V.75MA.4.5GHZ.AMP 01295 SKA4504 XSTR.SIG.BIPOLAR.NPN.15V.75MA.4.5GHZ.AMP 01295 SKA4504 XSTR.SIG. | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |--|----------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|------------------| | AACR3092 153-0044-00 DIODE DVC SE:SIGNAL,4 MTCH 152-0322-03 80009 153-0044-00 AAL03030 153-0044-00 DIODE DVC SE:SIGNAL,4 MTCH 152-0322-03 80009 153-0044-00 AAL03010 131-0391-00 CONN, REJACK-MALE 24931 32,JR 105-1 AAL0401 138-1277-00 CONN, REJACK-MALE 24931 32,JR 105-1 AAL0401 108-1277-00 CONN, REJACK-MALE 54937 108-1277-00 AAL0401 108-1278-00 CONN, REJACK-MALE 54937 108-1277-00 AAL0101 151-0190-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 300MHZ, AMP 01295 SKA3703 AAL0102 151-0567-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 5 OHM 04713 2N7000 AAL01021 151-0567-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 300MHZ, AMP 01295 SKA3703 AAL01031 151-0190-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 300MHZ, AMP 01295 SKA3703 AAL01031 151-0190-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 300MHZ, AMP 01295 SKA3703 AAL01031 151-0190-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 300MHZ, AMP 01295 SKA3703 AAL02010 151-0567-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 300MHZ, AMP 01295 SKA3703 AAL02011 151-0567-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 5 OHM 04713 2N7000 AAL02011 151-0567-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 5 OHM 04713 2N7000 AAL02011 151-0567-00 XSTR. SIG-BIPOLAR, NPN-40V, 200MA, 5 OHM 04713 2N7000 AAL02011 151-0567-00 XSTR. SIG-BIPOLAR, NPN-10V, 200MA, 250MHZ, AMP 01295 SKA3703 AAL02033 151-0271-00 XSTR. SIG-BIPOLAR, NPN-10V, 200MA, 250MHZ, AMP 01295 SKA3703 AAL02031 151-0188-00 XSTR. SIG-BIPOLAR, NPN-10V, 200MA, 250MHZ, AMP 01295 SKA3703 AAL02031 151-0190-00 XSTR. SIG-BIPOLAR, NPN-10V, 200MA, 250MHZ, AMP 01295 SKA3703 AAL02031 151-0190-00 XSTR. SIG-BIPOLAR, NPN-10V, 200MA, 250MHZ, AMP 01295 SKA3703 AAL02031 151-0190-00 XSTR. SIG-BIPOLAR, NPN-10V, 200MA, 250MHZ, AMP 01295 SKA3703 AAL02031 151-0190-00 XSTR. SIG-BIPOLAR, NPN-10V, 200MA, 250MHZ, AMP 01295 SKA3703 AAL02031 151-0190-00 XSTR. SIG-BIPOLAR, NPN-10V, 2 | A4CR3090 | 153-0044-00 | | ; | | DIODE DVC SE:SIGNAL,4 MTCH 152-0322-03 | 80009 | 153-0044-00 | | A4J3010 131–0391–00 CONN_RF_JACK-MALE 24931 32_JR105–1 A4J3040 131–3360–00 CONN_RF_JACK-MALE 24931 32_JR105–1 A4J3040 131–3360–00 CONN_HDR_PCB_MALE_STR_2 X 10 53387 3592–6002 A4L1040 108–1277–00 COIL_RF_SUB_LS_K_INDUCTOR 54937 108–1277–00 A4L2040 108–1278–00 COIL_RF_SUB_LS_K_INDUCTOR 0,R03 7611 A4L2041 108–1279–00 COIL_RF_SUB_LS_K_INDUCTOR 0,R03 7611 A4L2041 108–1279–00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_300MHZ_AMP 01295 SKA3703 A4Q1010 151–0567–00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5 OHM 04713 2N7000 A4Q1021 151–0567–00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5 OHM 04713 2N7000 A4Q1031 151–0190–00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_300MHZ_AMP 01295 SKA3703 A4Q1031 151–0190–00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_300MHZ_AMP 01295 SKA3703 A4Q10131 151–0567–00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_300MHZ_AMP 01295 SKA3703 A4Q10131 151–0567-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_300MHZ_AMP 01295 SKA3703 A4Q1010 151–0567-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_300MHZ_AMP 01295 SKA3703 A4Q1011 151–0567-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_300MHZ_AMP 01295 SKA3703 A4Q2011 151–0567-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5OHM 04713 2N7000 A4Q2011 151–0567-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5OHM 04713 2N7000 A4Q2011 151–0567-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5OHM 04713 2N7000 A4Q2012 151–0267-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5OHM 04713 2N7000 A4Q2013 151–0188-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5OHM 04713 2N7000 A4Q2031 151–0271-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5OHM QMT13 2N7000 A4Q2031 151–0271-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5OHM QMT13 2N7000 A4Q2031 151–0271-00 XSTR_SIG_MDS_N-CH_ENH_60V_200MA_5OHM QMT13 2N7000 A4Q2031 151-0961-00 B023756 B024751 XSTR_SIG_BIPOLAR_NPN_15V_50MA_2 OGHZ_AMP 01295 SKA4504 A4Q2040 151-0441-00 B023756 B024751 XSTR_SIG_BIPOLAR_NPN_15V_50MA_2 OGHZ_AMP 01795 SKA4504 A4Q2040 151-0441-00 XSTR_SIG_BIPOLAR_NPN_15V_50MA_2 OGHZ_AMP 01795 SKA3703 A4Q2050 151-0190-00 XSTR_SIG_BIPOLAR_NPN_15V_50MA_2 OGHZ_AMP 01795 SKA3703 A4Q2050 151-0190-00 XSTR_SIG_BIPOLAR_NPN_15V_50MA_2 OGHZ_AMP 01795 SKA3703 A4Q2050 151-0190-00 XS | A4CR3091 | 153-0044-00 | | | | DIODE DVC SE:SIGNAL,4 MTCH 152-0322-03 | 80009 | 153-0044-00 | | AAJ3010 131–0391–00 CONN.RF.JACK.MALE 24931 32JR105–1 AAJ3040 131–3360–00 CONN.HDR.PCB.MALE.STR.2 X 10 53387 3592–6002 AAL1040 108–1277–00 COIL.RF.80UH.5%,INDUCTOR 54937 108–1277–00 AAL2041 108–1278–00 COIL.RF.59UH.5%,INDUCTOR 0JR03 Z611 AAL2041 108–1279–00
COIL.RF.59UH.5%,INDUCTOR 0JR03 Z612 AAQ1010 151–0190–00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.300MHZ.AMIP 01295 SKA3703 AAQ1020 151–0567–00 XSTR.SIG.MOS.N-C-HENH.60V.200MA.5 OHM 04713 2N7000 AAQ1021 151–0567–00 XSTR.SIG.MOS.N-C-HENH.60V.200MA.5 OHM 04713 2N7000 AAQ1031 151–0190–00 XSTR.SIG.MOS.N-C-HENH.60V.200MA.300MHZ.AMIP 01295 SKA3703 AAQ1031 151–0190–00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.300MHZ.AMIP 01295 SKA3703 AAQ1031 151–0190–00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.300MHZ.AMIP 01295 SKA3703 AAQ1031 151–0567–00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.300MHZ.AMIP 01295 SKA3703 AAQ2011 151–0567–00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.200MHZ.AMIP 01295 SKA3703 AAQ2012 151–0057–00 XSTR.SIG.BIPOLAR.NPN.40V.200MA.200MHZ.AMIP 01295 SKA3703 AAQ2013 151–0188–00 XSTR.SIG.BIPOLAR.NPN.10V.200MA.200MHZ.AMIP 01295 SKA4504 AAQ2031 151–0188–00 XSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA4504 AAQ2031 151–0271–00 XSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA4504 AAQ2031 151–0471–00 B02030 B023756 B024251 XSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA4504 AAQ2050 151–0410–00 XSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA4504 AXSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA4504 AXSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA4504 AXSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA3703 AXSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA3703 AXSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA3703 AXSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 01295 SKA3703 AXC02050 151–0190–00 XSTR.SIG.BIPOLAR.NPN.15V.30MA.2.0GHZ.AMIP 012 | A4CR3092 | 153-0044-00 | | | | DIODE DVC SE:SIGNAL,4 MTCH 152-0322-03 | 80009 | 153-0044-00 | | AAL1040 131–3360-00 CONN.HDR:PCB.MALE.STR.2 X 10 53387 3592-6002 AAL1040 108-1277-00 COIL.RF:30UH.5%,INDUCTOR JAR03 Z611 AAL2041 108-1278-00 COIL.RF:59UH.5%,INDUCTOR JAR03 Z611 AAL2041 108-1279-00 COIL.RF:59UH.5%,INDUCTOR JAR03 Z611 AAL2041 108-1279-00 XSTR.SIG.BIPOLAR.NPN:40V.200MA.300MHZ.AMP J1295 SKA3703 AAQ1010 151–0567-00 XSTR.SIG.BIPOLAR.NPN:40V.200MA.5 OHM JAR03 Z47000 AAQ1021 151–0567-00 XSTR.SIG.BIPOLAR.NPN:40V.200MA.5 OHM JAR01031 JAR01030 JA | A4CR3093 | 153-0044-00 | | | | DIODE DVC SE:SIGNAL,4 MTCH 152-0322-03 | 80009 | 153-0044-00 | | A4L1040 108-1277-00 COIL.RF:80UH,5%,INDUCTOR 54937 108-1277-00 A4L2040 108-1278-00 COIL.RF:55UH,5%,INDUCTOR 0JR03 Z611 A4L2041 108-1279-00 COIL.RF:55UH,5%,INDUCTOR 0JR03 Z612 A4Q1010 151-0190-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1020 151-0567-00 XSTR,SIG-MOS,N-CH:ENH,60V,200MA,5 OHM 04713 2N7000 A4Q1021 151-0567-00 XSTR,SIG-MOS,N-CH:ENH,60V,200MA,5 OHM 04713 2N7000 A4Q1030 151-0190-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1031 151-0190-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1031 151-0567-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1031 151-0567-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1031 151-0567-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2010 151-0567-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2011 151-0567-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,50HM 04713 2N7000 A4Q2011 151-0567-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,50HM 04713 2N7000 A4Q2031 151-0188-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,50HM 04713 2N7000 A4Q2031 151-0271-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,50HM 04713 2N7000 A4Q2032 151-0271-00 XSTR,SIG-BIPOLAR,NPN:40V,200MA,20MHZ,AMP 03508 X39H3162 A4Q2032 151-0271-00 XSTR,SIG-BIPOLAR,NPN:15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2033 151-0271-00 XSTR,SIG-BIPOLAR,NPN:15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2034 151-0441-00 B02000 B023755 XSTR,SIG-BIPOLAR,NPN:15V,40MA,1.0GHZ,AMP 04713 SRF501 A4Q2050 151-0441-00 XSTR,SIG-BIPOLAR,NPN:15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2050 151-0190-00 XSTR,SIG-BIPOLAR,NPN:15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2050 151-0190-00 XSTR,SIG-BIPOLAR,NPN:15V,40MA,1.0GHZ,AMP 01295 SKA4504 A4Q2030 151-0190-00 XSTR,SIG-BIPOLAR,NPN:15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2050 151- | A4J3010 | 131–0391–00 | | | | CONN,RF,JACK:MALE | 24931 | 32JR105-1 | | A4L2040 108-1278-00 COIL.RF:7.5UH.5%,INDUCTOR 0JR03 Z611 A4L2041 108-1279-00 COIL.RF:590UH.5%,INDUCTOR 0JR03 Z612 A4Q1010 151-0190-00 XSTR,SIG:BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1020 151-0567-00 XSTR,SIG:MOS,N-C-HENH,60V,200MA,5 OHM 04713 ZN7000 A4Q1020 151-0567-00 XSTR,SIG:MOS,N-C-HENH,60V,200MA,5 OHM 04713 ZN7000 A4Q1030 151-0190-00 XSTR,SIG:MOS,N-C-HENH,60V,200MA,5 OHM 04713 ZN7000 A4Q1031 151-0190-00 XSTR,SIG:BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1031 151-0190-00 XSTR,SIG:BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1031 151-0567-00 XSTR,SIG:BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2010 151-0567-00 XSTR,SIG:MOS,N-C-HENH,60V,200MA,50HM 04713 ZN7000 A4Q2011 151-0567-00 XSTR,SIG:MOS,N-C-HENH,60V,200MA,50HM 04713 ZN7000 A4Q2012 151-0567-00 XSTR,SIG:MOS,N-C-HENH,60V,200MA,50HM 04713 ZN7000 A4Q2012 151-0567-00 XSTR,SIG:MOS,N-C-HENH,60V,200MA,50HM 04713 ZN7000 A4Q2013 151-0188-00 XSTR,SIG:BIPOLAR,PNP:40V,200MA,250MHZ,AMP 04713 ZN7000 A4Q2030 151-0188-00 XSTR,SIG:BIPOLAR,PNP:40V,200MA,250MHZ,AMP 04703 ZN7000 A4Q2031 151-0188-00 XSTR,SIG:BIPOLAR,PNP:15V,30MA,2 GGHZ,AMP 01295 SKA4504 A4Q2032 151-0271-00 XSTR,SIG:BIPOLAR,PNP:15V,30MA,2 GGHZ,AMP 01295 SKA4504 A4Q2033 151-0271-00 B024252 XSTR,SIG:BIPOLAR,PNP:15V,30MA,2 GGHZ,AMP 01295 SKA4504 A4Q2040 151-0441-00 B02000 B023755 XSTR,SIG:BIPOLAR,PNP:15V,30MA,3 GGHZ,AMP 04713 ZN3839 A4Q2050 151-0441-00 XSTR,SIG:BIPOLAR,PNP:15V,30MA,2 GGHZ,AMP 04713 ZN3839 A4Q2050 151-0441-00 XSTR,SIG:BIPOLAR,PNP:15V,30MA,2 GGHZ,AMP 01295 SKA4504 151-045-00 B023756 SU24251 XS | A4J3040 | 131–3360–00 | | | | CONN,HDR:PCB,MALE,STR,2 X 10 | 53387 | 3592–6002 | | A4Q1010 151-0190-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;300MHZ,AMP 01295 SKA3703 A4Q1020 151-0567-00 XSTR.SIG:MOS,N-CHENH,60V,200MA;50HM 04713 2N7000 A4Q1021 151-0567-00 XSTR.SIG:MOS,N-CHENH,60V,200MA;50HM 04713 2N7000 A4Q1022 151-0567-00 XSTR.SIG:MOS,N-CHENH,60V,200MA;50HM 04713 2N7000 A4Q1032 151-0190-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;300MHZ,AMP 01295 SKA3703 A4Q1030 151-0190-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;300MHZ,AMP 01295 SKA3703 A4Q1030 151-0567-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;300MHZ,AMP 01295 SKA3703 A4Q1010 151-0567-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;300MHZ,AMP 01295 SKA3703 A4Q2011 151-0567-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;50HM 04713 2N7000 A4Q2021 151-0567-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;50HM 04713 2N7000 A4Q2031 151-0188-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;50HM 04713 2N7000 A4Q2031 151-0188-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;50HM 04713 2N7000 A4Q2031 151-0188-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;50HMZ,AMP 03508 X39H3162 A4Q2032 151-0271-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;50HMZ,AMP 03508 X39H3162 A4Q2033 151-0271-00 XSTR.SIG:BIPOLAR,NPN:40V,200MA;50HMZ,AMP 03508 X39H3162 A4Q2034 151-0448-00 B02000 B023755 XSTR.NPN.SI,TO-46 2N5836 FAMILY 04713 SRF504 A4Q2034 151-0448-00 B02000 B023755 XSTR.NPN.SI,TO-46 2N5836 FAMILY 04713 SRF504 A4Q2035 151-0951-00 B024252 XSTR.SIG:BIPOLAR,NPN:15V,70MA;2.0GHZ,AMP 01795 SKA4504 A4Q2051 151-0951-00 B024252 XSTR.SIG:BIPOLAR,NPN:15V,70MA;4.5GHZ,AMP 01795 SKA4504 A4Q2051 151-0965-00 B023756 B024251 XSTR.SIG:BIPOLAR,NPN:15V,70MA;4.5GHZ,AMP 01795 SKA3703 A4Q2050 151-0941-00 XSTR.SIG:BIPOLAR,NPN:15V,70MA;4.5GHZ,AMP 01795 SKA3703 A4Q2051 151-0940-00 XSTR.SIG:BIPOLAR,NPN:15V,70MA;4.5GHZ,AMP 01795 SKA3703 A4Q2051 151-0941-00 XSTR.SIG:BIPOLAR,NPN:15V,70MA;4.5GHZ,AMP 01795 SKA3703 A4Q2050 151-0 | A4L1040 | 108–1277–00 | | | | COIL,RF:80UH,5%,INDUCTOR | 54937 | 108–1277–00 | | A4Q1010 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1020 151-0567-00 XSTR,SIG:MOS,N-CH:ENH,60V,200MA,5 OHM 04713 2N7000 A4Q1021 151-0567-00 XSTR,SIG:MOS,N-CH:ENH,60V,200MA,5 OHM 04713 2N7000 A4Q1022 151-0567-00 XSTR,SIG:MOS,N-CH:ENH,60V,200MA,5 OHM 04713 2N7000 A4Q1030 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,5 OHM 04713 2N7000 A4Q1031 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q1030 151-0567-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2010 151-0567-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,5 OHM 04713 2N7000 A4Q2011 151-0567-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,5 OHM 04713 2N7000 A4Q2011 151-0567-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,5 OHM 04713 2N7000 A4Q2011 151-0567-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,5 OHM 04713 2N7000 A4Q2031 151-0188-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,5 OHM 04713 2N7000 A4Q2031 151-0188-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,5 OHM 04713 2N7000 A4Q2031 151-0271-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,2 OHZ,AMP 01295 SKA4504 A4Q2034 151-0271-00 XSTR,SIG:BIPOLAR,NPN;15V,30MA,2 OGHZ,AMP 01295 SKA4504 A4Q2034 151-0441-00 B02000 B023756 XSTR,SIG:BIPOLAR,NPN,15V,30MA,2 OGHZ,AMP 04713 SRF504 A4Q2051 151-0965-00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,15V,40MA,1 OGHZ,AMP 04713 2N3839 A4Q2050 151-0441-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2051 XSTR,SIG:BIPOLAR,NPN;40V | A4L2040 | 108-1278-00 | | | | COIL,RF:7.5UH,5%,INDUCTOR | 0JR03 | Z611 | | A4Q1020 151-0567-00 | A4L2041 | 108–1279–00 | | | | COIL,RF:590UH,5%,INDUCTOR | 0JR03 | Z612 | | AA01021 151-0567-00 | A4Q1010 | 151–0190–00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A4Q1022 151-0567-00 | A4Q1020 | 151-0567-00 | | | | XSTR,SIG:MOS,N-CH;ENH,60V,200MA,5 OHM | 04713 | 2N7000 | | AAQ1030 151-0190-00 | A4Q1021 | 151-0567-00 | | | | XSTR,SIG:MOS,N-CH;ENH,60V,200MA,5 OHM | 04713 | 2N7000 | | A4Q1031 151-0190-00 | A4Q1022 | 151-0567-00 | | | | XSTR,SIG:MOS,N-CH;ENH,60V,200MA,5 OHM | 04713 | 2N7000 | | A4Q2010 151-0567-00 | A4Q1030 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A4Q2010 151-0567-00 | A4Q1031 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A4Q2011 151-0567-00 | A4Q1060 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A4Q2012 151-0567-00 | A4Q2010 | 151-0567-00 | | | | XSTR,SIG:MOS,N-CH;ENH,60V,200MA,5 OHM | 04713 | 2N7000 | | A4Q2030 151-0188-00 | A4Q2011 | 151-0567-00 | | | |
XSTR,SIG:MOS,N-CH;ENH,60V,200MA,5 OHM | 04713 | 2N7000 | | A4Q2031 151-0188-00 | A4Q2012 | 151-0567-00 | | | | XSTR,SIG:MOS,N-CH;ENH,60V,200MA,5 OHM | 04713 | 2N7000 | | A4Q2032 151-0271-00 | A4Q2030 | 151-0188-00 | | | | XSTR,SIG:BIPOLAR,PNP;40V,200MA,250MHZ,AMP | 03508 | X39H3162 | | A4Q2033 151-0271-00 | A4Q2031 | 151-0188-00 | | | | XSTR,SIG:BIPOLAR,PNP;40V,200MA,250MHZ,AMP | 03508 | X39H3162 | | A4Q2034 151-0448-00 B02000 B023755 XSTR:NPN,SI,TO-46 2N5836 FAMILY 04713 SRF504 151-0965-00 B023756 B024251 XSTR;SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 151-0951-00 B024252 XSTR;SIG:BIPOLAR,NPN,15V,75MA,4.5GHZ,AMP 80009 151-0951-00 A4Q2040 151-0441-00 XSTR;SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2050 151-0190-00 XSTR;SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2051 151-0190-00 XSTR;SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2052 151-0441-00 XSTR;SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2053 151-0271-00 XSTR;SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1103-00 XSTR;SIG:BIPOLAR,NPN;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1103-00 XSTR;SIG:BIPOLAR,NPN;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q3020 151-1174-00 B02000 B023755 XSTR:NPN,RF BFR96,TO-46 04713 MRF-965 151-0965-00 B023756 B024251 XSTR;SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | A4Q2032 | 151-0271-00 | | | | XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP | 01295 | SKA4504 | | 151-0965-00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 151-0951-00 B024252 XSTR,SIG:BIPOLAR,NPN,15V,75MA,4.5GHZ,AMP 80009 151-0951-00 A4Q2040 151-0441-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2050 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2051 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2052 151-0441-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2053 151-0271-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1103-00 XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1174-00 B02000 B023755 XSTR,SIG:BIPOLAR,NPN,10V,80MA,45 OHM 17856 DM1140/SD210DE A4Q3020 151-0965-00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | A4Q2033 | 151-0271-00 | | | | XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP | 01295 | SKA4504 | | 151-0951-00 B024252 XSTR,SIG:BIPOLAR,NPN,15V,75MA,4.5GHZ,AMP 80009 151-0951-00 A4Q2040 151-0441-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2050 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2051 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2052 151-0441-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2053 151-0271-00 XSTR,SIG:BIPOLAR,NPN;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1103-00 XSTR,SIG:BIPOLAR,NPN;15V,30MA,45 OHM 17856 DM1140/SD210DE A4Q3020 151-174-00 B020000 B023755 XSTR:NPN,RF BFR96,TO-46 04713 MRF-965 151-0965-00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | A4Q2034 | 151-0448-00 | B020000 | B023755 | | XSTR:NPN,SI,TO-46 2N5836 FAMILY | 04713 | SRF504 | | A4Q2040 151-0441-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2050 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2051 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2052 151-0441-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2053 151-0271-00 XSTR,SIG:BIPOLAR,NPN;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1103-00 XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q3020 151-1174-00 B020000 B023755 XSTR,SIG:BIPOLAR,NPN,10V,80MA,45 OHM 17856 DM1140/SD210DE A4Q3020 151-0965-00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | | 151-0965-00 | B023756 | B024251 | | XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP | 04713 | MPS571 | | A4Q2050 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2051 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2052 151-0441-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2053 151-0271-00 XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1103-00 XSTR,SIG:BIPOLAR,PNP;15V,30MA,45 OHM 17856 DM1140/SD210DE A4Q3020 151-1174-00 B02000 B023755 XSTR:NPN,RF BFR96,TO-46 04713 MRF-965 151-0965-00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | | 151-0951-00 | B024252 | | | XSTR,SIG:BIPOLAR,NPN,15V,75MA,4.5GHZ,AMP | 80009 | 151-0951-00 | | A4Q2051 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A4Q2052 151-0441-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2053 151-0271-00 XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1103-00 XSTR,SIG:DMOS,N-CH;ENH,30V,50MA,45 OHM 17856 DM1140/SD210DE A4Q3020 151-1174-00 B02000 B023755 XSTR:NPN,RF BFR96,TO-46 04713 MRF-965 151-0965-00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | A4Q2040 | 151-0441-00 | | | | XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP | 04713 | 2N3839 | | A4Q2052 151-0441-00 XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP 04713 2N3839 A4Q2053 151-0271-00 XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1103-00 XSTR,SIG:DMOS,N-CH;ENH,30V,50MA,45 OHM 17856 DM1140/SD210DE A4Q3020 151-1174-00 B02000 B023755 XSTR:NPN,RF BFR96,TO-46 04713 MRF-965 151-0965-00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | A4Q2050 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A4Q2053 151-0271-00 XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP 01295 SKA4504 A4Q2060 151-1103-00 XSTR,SIG:DMOS,N-CH;ENH,30V,50MA,45 OHM 17856 DM1140/SD210DE A4Q3020 151-1174-00 B020000 B023755 XSTR:NPN,RF BFR96,TO-46 04713 MRF-965 151-0965-00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | A4Q2051 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A4Q2060 151–1103–00 XSTR,SIG:DMOS,N-CH;ENH,30V,50MA,45 OHM 17856 DM1140/SD210DE A4Q3020 151–1174–00 B02000 B023755 XSTR:NPN,RF BFR96,TO–46 04713 MRF-965 151–0965–00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | A4Q2052 | 151-0441-00 | | | | XSTR,SIG:BIPOLAR,NPN;15V,40MA,1.0GHZ,AMP | 04713 | 2N3839 | | A4Q3020 151–1174–00 B020000 B023755 XSTR:NPN,RF BFR96,TO–46 04713 MRF–965
151–0965–00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | A4Q2053 | 151-0271-00 | | | | XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP | 01295 | SKA4504 | | 151–0965–00 B023756 B024251 XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP 04713 MPS571 | A4Q2060 | 151-1103-00 | | | | XSTR,SIG:DMOS,N-CH;ENH,30V,50MA,45 OHM | 17856 | DM1140/SD210DE | | | A4Q3020 | 151-1174-00 | B020000 | B023755 | | XSTR:NPN,RF BFR96,TO-46 | 04713 | MRF-965 | | 151–0951–00 B024252 XSTR,SIG:BIPOLAR,NPN,15V,75MA,4.5GHZ,AMP 80009 151–0951–00 | | 151-0965-00 | B023756 | B024251 | | XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP | 04713 | MPS571 | | | | 151-0951-00 | B024252 | | | XSTR,SIG:BIPOLAR,NPN,15V,75MA,4.5GHZ,AMP | 80009 | 151-0951-00 | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|------------------| | A4Q3021 | 151-0296-00 | | | | XSTR,SIG:BIPOLAR,PNP;10V,30MA,4.0GHZ,AMP | 04713 | SS443 | | A4Q3035 | 151-0188-00 | | | | XSTR,SIG:BIPOLAR,PNP;40V,200MA,250MHZ,AMP | 03508 | X39H3162 | | A4Q3050 | 151-0448-00 | B020000 | B023755 | | XSTR:NPN,SI,TO-46 2N5836 FAMILY | 04713 | SRF504 | | | 151-0965-00 | B023756 | B024251 | | XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP | 04713 | MPS571 | | | 151-0951-00 | B024252 | | | XSTR,SIG:BIPOLAR,NPN,15V,75MA,4.5GHZ,AMP | 80009 | 151-0951-00 | | A4Q3060 | 151-0188-00 | | | | XSTR,SIG:BIPOLAR,PNP;40V,200MA,250MHZ,AMP | 03508 | X39H3162 | | A4Q3061 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A4Q3062 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A4Q3070 | 151-0271-00 | | | | XSTR,SIG:BIPOLAR,PNP;15V,30MA,2.0GHZ,AMP | 01295 | SKA4504 | | A4Q3080 | 151-1174-00 | B020000 | B023755 | | XSTR:NPN,RF BFR96,TO-46 | 04713 | MRF-965 | | | 151-0965-00 | B023756 | B024251 | | XSTR,SIG:BIPOLAR,NPN,10V,80MA,6.0GHZ,AMP | 04713 | MPS571 | | | 151-0951-00 | B024252 | | | XSTR,SIG:BIPOLAR,NPN,15V,75MA,4.5GHZ,AMP | 80009 | 151-0951-00 | | A4R1010 | 315-0204-00 | | | | RES,FXD,FILM:200K OHM,5%,0.25W | 01121 | CB2045 | | A4R1011 | 315-0243-00 | | | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | A4R1012 | 315-0104-00 | | | | RES,FXD,FILM:100K OHM,5%,0.25W | 01121 | CB1045 | | A4R1013 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R1022 | 315-0104-00 | | | | RES,FXD,FILM:100K OHM,5%,0.25W | 01121 | CB1045 | | A4R1023 | 315-0104-00 | | | | RES,FXD,FILM:100K OHM,5%,0.25W | 01121 | CB1045 | | A4R1030 | 315-0104-00 | | | | RES,FXD,FILM:100K OHM,5%,0.25W | 01121 | CB1045 | | A4R1031 | 315-0204-00 | | | | RES,FXD,FILM:200K OHM,5%,0.25W | 01121 | CB2045 | | A4R1032 | 315-0104-00 | | | | RES,FXD,FILM:100K OHM,5%,0.25W | 01121 | CB1045 | | A4R1033 | 315-0243-00 | | | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | A4R1034 | 315-0204-00 | | | | RES,FXD,FILM:200K OHM,5%,0.25W | 01121 | CB2045 | | A4R1035 | 315-0104-00 | | | | RES,FXD,FILM:100K OHM,5%,0.25W | 01121 | CB1045 | | A4R1036 | 315-0243-00 | | | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | A4R1037 | 315-0470-00 | | | | RES,FXD,FILM:47 OHM,5%,0.25W | 01121 | CB4705 | | A4R1038 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R1050 | 315-0204-00 | | | | RES,FXD,FILM:200K OHM,5%,0.25W | 01121 | CB2045 | | A4R1051 | 315-0204-00 | | | | RES,FXD,FILM:200K OHM,5%,0.25W | 01121 | CB2045 | | A4R1052 | 315-0242-00 | | | | RES,FXD,FILM:2.4K OHM,5%,0.25W | 01121 | CB2425
 | A4R1053 | 315-0204-00 | | | | RES,FXD,FILM:200K OHM,5%,0.25W | 01121 | CB2045 | | A4R1054 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R1060 | 315-0204-00 | | | | RES,FXD,FILM:200K OHM,5%,0.25W | 01121 | CB2045 | | A4R1061 | 315-0243-00 | | | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | A4R1062 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R1063 | 315-0204-00 | | | | RES,FXD,FILM:200K OHM,5%,0.25W | 01121 | CB2045 | | | | B010100 | B025257 | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|-------------------------------------|--------------|------------------| | | 315-0220-00 | B020258 | | | RES,FXD,FILM:20 OHM,5%,0.25W | 50139 | CB2005 | | A4R1065 | 315-0101-00 | B010100 | B020257 | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | | 315-0220-00 | B020258 | | | RES,FXD,FILM:20 OHM,5%,0.25W | 50139 | CB2005 | | A4R1066 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R1070 | 321-0631-03 | | | | RES,FXD,FILM:12.5K OHM,0.25%,0.125W | 19701 | 5033RC12K500C | | A4R1071 | 322-3389-00 | | | | RES,FXD,FILM:110K OHM,0.25%,0.2W | 56845 | CCF-50-2-1103F | | A4R1072 | 321-0645-00 | | | | RES,FXD,FILM:100K OHM,0.5%,0.125W | 19701 | 5033RC1003D | | A4R1073 | 321-0645-00 | | | | RES,FXD,FILM:100K OHM,0.5%,0.125W | 19701 | 5033RC1003D | | A4R1074 | 322-3396-00 | | | | RES,FXD,FILM:130K OHM,1%,0.2W | 57668 | CRB20 FXE 130K | | A4R1080 | 311-1917-00 | | | | RES,VAR,NONWW:TRMR,5K OHM,10%,0.5 W | 32997 | 3386C-1-502 | | A4R1090 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R1091 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R2010 | 315-0104-00 | | | | RES,FXD,FILM:100K OHM,5%,0.25W | 01121 | CB1045 | | A4R2011 | 315-0104-00 | | | | RES,FXD,FILM:100K OHM,5%,0.25W | 01121 | CB1045 | | A4R2012 | 315-0104-00 | | | | RES,FXD,FILM:100K OHM,5%,0.25W | 01121 | CB1045 | | A4R2020 | 322-3093-00 | | | | RES,FXD,FILM:90.9 OHM,1%,0.2W | 91637 | CCF50-2F90R90F | | A4R2021 | 322-3093-00 | | | | RES,FXD,FILM:90.9 OHM,1%,0.2W | 91637 | CCF50-2F90R90F | | A4R2022 | 322-3135-00 | | | | RES,FXD,FILM:249 OHM,1%,0.2W | 57668 | CRB20 FXE 249E | | A4R2023 | 322-3133-00 | | | | RES,FXD,FILM:237 OHM,1%,0.2W | 91637 | CCF50-2F237R0F | | A4R2030 | 315-0470-00 | | | | RES,FXD,FILM:47 OHM,5%,0.25W | 01121 | CB4705 | | A4R2031 | 315-0300-00 | | | | RES,FXD,FILM:30 OHM,5%,0.25W | 01121 | CB3005 | | A4R2040 | 315-0432-00 | | | | RES,FXD,FILM:4.3K OHM,5%,0.25W | 01121 | CB4325 | | A4R2041 | 315-0432-00 | | | | RES,FXD,FILM:4.3K OHM,5%,0.25W | 01121 | CB4325 | | A4R2042 | 315-0470-00 | | | | RES,FXD,FILM:47 OHM,5%,0.25W | 01121 | CB4705 | | A4R2043 | 315-0432-00 | | | | RES,FXD,FILM:4.3K OHM,5%,0.25W | 01121 | CB4325 | | A4R2044 | 315-0432-00 | | | | RES,FXD,FILM:4.3K OHM,5%,0.25W | 01121 | CB4325 | | A4R2050 | 315-0243-00 | | | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | A4R2051 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R2052 | 315-0243-00 | | | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | A4R2053 | 315-0243-00 | | | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | A4R2054 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R2055 | 315-0103-00 | | | | RES,FXD,FILM:10K OHM,5%,0.25W | 01121 | CB1035 | | A4R2060 | 315-0752-00 | | | | RES,FXD,FILM:7.5K OHM,5%,0.25W | 01121 | CB7525 | | A4R2061 | 315-0562-00 | | | | RES,FXD,FILM:5.6K OHM,5%,0.25W | 01121 | CB5625 | | A4R2062 | 315-0562-00 | | | | RES,FXD,FILM:5.6K OHM,5%,0.25W | 01121 | CB5625 | | A4R2063 | 322–3385–00 | | | | RES,FXD:METAL FILM:100K OHM,1%,0.2W | 57668 | CRB20 FXE 100K | | A4R2064 | 315-0273-00 | | | | RES,FXD,FILM:27K OHM,5%,0.25W | 01121 | CB2735 | | A4R2065 | 315-0333-00 | | | | RES,FXD,FILM:33K OHM,5%,0.25W | 01121 | CB3335 | | | | | | | .,, | | | | MR2067 315-0101-00 RES.FXD.FILM.100 OHM.5%,0.25W 01121 CB1015 | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |--|----------------|--------------------------|-------------------------|-------------------------|-----|--------------------------------------|--------------|------------------| | MR2070 315-0101-00 | A4R2066 | 315-0102-00 | | | | RES,FXD,FILM:1K OHM,5%,0.25W | 01121 | CB1025 | | MR2071 315-0101-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 MR2073 315-0101-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 MR2073 315-0102-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 MR2074 322-3242-00 RES,FXD,FILM:324K OHM,5%,0.25W 01121 CB1025 MR2076 315-0102-00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB1025 MR2080 315-0105-00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB1025 MR2081 315-0105-00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB1025 MR2082 322-3260-00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB1025 MR2083 315-0472-00 RES,FXD,FILM:4.9K OHM,5%,0.25W 01121 CB1025 MR2090 322-3260-00 RES,FXD,FILM:4.9K OHM,5%,0.25W 01121 CB1025 MR2090 322-3260-00 RES,FXD,FILM:4.9K OHM,5%,0.25W 01121 CB4735 MR2091 322-3364-00 RES,FXD,FILM:4.9K OHM,5%,0.25W 01121 CB4735 MR2092 322-3289-00 RES,FXD,FILM:4.9K OHM,5%,0.25W 57668 CR820 FXE 4K/9 MR2093 322-3289-00 RES,FXD,FILM:4.9K OHM,5%,0.25W 57668 CR820 FXE 12K1 MR2094 322-3297-00 RES,FXD,FILM:4.9K OHM,5%,0.25W 57668 CR820 FXE 10K1 MR2095 322-3289-00 RES,FXD,FILM:4.9K OHM,5%,0.25W 57668 CR820 FXE 10K1 MR2096 322-3299-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K1 MR2097 311-1917-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2097 311-1917-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2098 315-0979-02 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2099 315-0979-02 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2097 311-1917-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2097 311-1977-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2097 311-1977-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2097 311-1070-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2097 311-1070-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2097 311-1070-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2098 315-0970-00 RES,FXD,FILM:00 K OHM,1%,0.2W 57668 CR820 FXE 10K0 MR2099 315-0970-00 RES,FXD,FILM:00 K OHM,5%,0.2SW 01121 CB4725 MR3011 315-0970-00 RES,FXD,FILM:00 COHM,5%,0.2SW 01121 CB4725 MR3031 315-0970-00 RES,FXD,FILM:00 COHM,5%,0 | A4R2067 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | MR2072 315-0101-00 | A4R2070 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | MR2073 315-0101-00 RES.FXD.FILM*100 OHM,5%,0.25W 01121 CB1015 | A4R2071 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | AREZO74 322-3242-00 RES.FXD.FILM.3.24K.OHM.1%.0.2W 57668 CRB20 FXE 3KZ4 | A4R2072 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | RES.FXD.FILM:1K OHM.5%,0.25W 01121 CB1025 | A4R2073 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | MR2080 315-0105-00 RES,FXD,FILM-1,TK OHM,5%,0.25W 01121 CB1055 | A4R2074 | 322-3242-00 | | | | RES,FXD,FILM:3.24K OHM,1%,0.2W | 57668 | CRB20 FXE 3K24 | | MR2080 315-0105-00 | A4R2075 | 315-0102-00 | | | | RES,FXD,FILM:1K OHM,5%,0.25W | 01121 | CB1025 | | MR2081 315-0105-00 RES.FXD.FILM.1M OHM.5%, 0.25W 01121 CB1055 | A4R2076 | 315-0472-00 | | | | RES,FXD,FILM:4.7K OHM,5%,0.25W | 01121 | CB4725 | | MR2082 322-3260-00 | A4R2080 | 315-0105-00 | | | | RES,FXD,FILM:1M OHM,5%,0.25W | 01121 | CB1055 | | RES_FXD_FILM-47K OHM,5%,0.25W 01121 CB4735 | A4R2081 | 315-0105-00 | | | | RES,FXD,FILM:1M OHM,5%,0.25W | 01121 | CB1055 | | RES.FXD.FILM:4.99K OHM.1%,0.2W
57668 CRB20 FXE 4K99 | A4R2082 | 322-3260-00 | | | | RES,FXD,FILM:4.99K OHM,1%,0.2W | 57668 | CRB20 FXE 4K99 | | RES.FXD.FILM:12.1K OHM.1%,0.2W 57668 CRB20 FXE 12K1 | A4R2083 | 315-0473-00 | | | | RES,FXD,FILM:47K OHM,5%,0.25W | 01121 | CB4735 | | A4R2092 322-3384-00 RES,FXD,FILM:60.4K OHM,1%,0.2W 57668 CRB20 FXE 60K4 A4R2093 322-3297-00 RES,FXD,FILM:10K OHM,1%,0.2W 57668 CRB20 FXE 10K0 A4R2094 322-3297-00 RES,FXD,FILM:60.4K OHM,1%,0.2W 57668 CRB20 FXE 12K1 A4R2095 322-3384-00 RES,FXD,FILM:60.4K OHM,1%,0.2W 57668 CRB20 FXE 12K1 A4R2096 322-3289-00 RES,FXD,FILM:60.4K OHM,1%,0.2W 57668 CRB20 FXE 10K0 A4R2097 311-1917-00 RES,VAR,NONWW:TRMR,5K OHM,10%,0.5W 32997 3386C-1-502 A4R2098 315-0390-00 RES,FXD,FILM:39 OHM,5%,0.25W 01121 CB3905 A4R3010 321-0799-02 RES,FXD,FILM:46.8 OHM,0.5%,0.125W 19701 5043ED383R0F A4R3011 321-0153-00 RES,FXD,FILM:47K OHM,5%,0.25W 10121 CB4725 A4R3020 315-0472-00 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB4725 A4R3021 315-0472-00 B024701 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB4725 A4R3023 315-0472-00 B024701 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB4725 A4R3033 315-0472-00 R024701 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB4725 A4R3033 315-0471-00 B02000 B024700 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB4725 A4R3031 315-0131-00 B02000 B024700 RES,FXD,FILM:40 OHM,5%,0.25W 01121 CB4725 A4R3033 315-0471-00 R024701 RES,FXD,FILM:40 OHM,5%,0.25W 01121 CB4715 | A4R2090 | 322-3260-00 | | | | RES,FXD,FILM:4.99K OHM,1%,0.2W | 57668 | CRB20 FXE 4K99 | | RES.FXD.FILM:10K OHM.1%,0.2W 57668 CRB20 FXE 10K0 | A4R2091 | 322-3297-00 | | | | RES,FXD:METAL FILM:12.1K OHM,1%,0.2W | 57668 | CRB20 FXE 12K1 | | RES,FXD.FILM:10.4K OHM,1%,0.2W 57668 CRB20 FXE 12K1 | A4R2092 | 322-3364-00 | | | | RES,FXD,FILM:60.4K OHM,1%,0.2W | 57668 | CRB20 FXE 60K4 | | RES.FXD.FILM:60.4K OHM.1%,0.2W 57668 CRB20 FXE 60K4 | A4R2093 | 322-3289-00 | | | | RES,FXD,FILM:10K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | AR2096 322–3289–00 RES,FXD,FILM:10K OHM,1%,0.2W 57668 CRB20 FXE 10K0 AR2097 311–1917–00 RES,VAR,NONWW:TRMR,5K OHM,10%,0.5 W 32997 3386C–1–502 AR2098 315–0390–00 RES,FXD,FILM:39 OHM,5%,0.25W 01121 CB3905 AR3010 321–0799–02 RES,FXD,FILM:146.8 OHM,0.5%,0.125W 01121 ADVISE AR3011 321–0153–00 RES,FXD,FILM:383 OHM,1%,0.125W 19701 5043ED383R0F AR3012 321–0857–01 RES,FXD,FILM:360 OHM,0.5%,0.125W 19701 5033RD360R0F AR3020 315–0472–00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 AR3021 315–0470–00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4705 AR3022 315–042–00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4355 315–0472–00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 AR3023 315–0472–00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 AR3024 321–1087–01 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 AR3030 315–0472–00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 AR3031 315–0151–00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 AR3030 315–0151–00 B024701 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB4725 AR3030 315–0151–00 B024701 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 AR3031 315–0151–00 B024701 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1515 AR3033 315–0471–00 RO24701 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1515 AR3033 315–0471–00 RO24701 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1515 | A4R2094 | 322-3297-00 | | | | RES,FXD:METAL FILM:12.1K OHM,1%,0.2W | 57668 | CRB20 FXE 12K1 | | A4R2097 311–1917–00 RES,VAR,NONWW:TRMR,5K OHM,10%,0.5 W 32997 3386C–1–502 A4R2098 315–0390–00 RES,FXD,FILM:39 OHM,5%,0.25W 01121 CB3905 A4R3010 321–0799–02 RES,FXD,FILM:39 OHM,0.5%,0.125W 01121 ADVISE A4R3011 321–0153–00 RES,FXD,FILM:383 OHM,1%,0.125W 19701 5043ED383R0F A4R3012 321–0857–01 RES,FXD,FILM:360 OHM,0.5%,0.125W 19701 5033RD360R0F A4R3020 315–0472–00 RES,FXD,FILM:47 OHM,5%,0.25W 01121 CB4725 A4R3021 315–0470–00 RES,FXD,FILM:47 OHM,5%,0.25W 01121 CB4705 A4R3022 315–0472–00 B024701 RES,FXD,FILM:47 K OHM,5%,0.25W 01121 CB4725 A4R3023 315–0472–00 B024701 RES,FXD,FILM:47 K OHM,5%,0.25W 01121 CB4725 A4R3023 315–0472–00 B024701 RES,FXD,FILM:47 K OHM,5%,0.25W 01121 CB4725 A4R3024 321–1087–01 RES,FXD,FILM:47 K OHM,5%,0.25W 01121 CB4725 A4R3024 321–1087–01 RES,FXD,FILM:47 K OHM,5%,0.25W 01121 CB4725 A4R3030 315–0101–00 RES,FXD,FILM:47 K OHM,5%,0.25W 01121 CB4725 A4R3031 315–0151–00 B024701 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315–0151–00 B024701 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1015 A4R3033 315–0151–00 B024701 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 A4R3033 315–0151–00 R024701 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 A4R3033 315–0151–00 R024701 RES,FXD,FILM:150 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:150 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:100 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:100 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:100 OHM,5%,0.25W 07716 CEAD500R0F | A4R2095 | 322-3364-00 | | | | RES,FXD,FILM:60.4K OHM,1%,0.2W | 57668 | CRB20 FXE 60K4 | | A4R2098 315-0390-00 RES,FXD,FILM:39 OHM,5%,0.25W 01121 CB3905 A4R3010 321-0799-02 RES,FXD,FILM:146.8 OHM,0.5%,0.125W 01121 ADVISE A4R3011 321-0153-00 RES,FXD,FILM:383 OHM,1%,0.125W 19701 5043ED383R0F A4R3012 321-0857-01 RES,FXD,FILM:360 OHM,0.5%,0.125W 19701 5033RD360R0F A4R3020 315-0472-00 RES,FXD,FILM:47 OHM,5%,0.25W 01121 CB4725 A4R3021 315-0470-00 B02000 B024700 RES,FXD,FILM:47 OHM,5%,0.25W 01121 CB4705 A4R3022 315-0472-00 B024701 RES,FXD,FILM:47 OHM,5%,0.25W 01121 CB4725 A4R3023 315-0472-00 B02000 B024701 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB2435 A4R3023 315-0472-00 B024701 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB2435 A4R3024 321-1087-01 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB2435 A4R3024 321-1087-01 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3030 315-0101-00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3031 315-0151-00 B02000 B024701 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0151-00 B02000 B024701 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3033 315-0151-00 B02000 RES,FXD,FILM:130 OHM,5%,0.25W 01121 CB1015 A4R3033 315-0151-00 RO2000 RES,FXD,FILM:130 OHM,5%,0.25W 01121 CB1015 A4R3033 315-0151-00 RO2000 RES,FXD,FILM:130 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:1470 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:1470 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 07716 CEAD500R0F | A4R2096 | 322-3289-00 | | | | RES,FXD,FILM:10K OHM,1%,0.2W | 57668 | CRB20 FXE 10K0 | | A4R3010 321–0799–02 RES,FXD,FILM:146.8 OHM,0.5%,0.125W 01121 ADVISE A4R3011 321–0153–00 RES,FXD,FILM:383 OHM,1%,0.125W 19701 5043ED383R0F A4R3012 321–0857–01 RES,FXD,FILM:360 OHM,0.5%,0.125W 19701 5033RD360R0F A4R3020 315–0472–00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3021 315–0470–00 B024700 RES,FXD,FILM:47 OHM,5%,0.25W 01121 CB2435 A4R3022 315–0243–00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB2435 A4R3023 315–0243–00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB2435 A4R3023 315–0472–00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB2435 A4R3024 321–1087–01 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB2435 A4R3024 321–1087–01 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3030 315–0101–00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315–0151–00 B02000 B024700 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315–0151–00 B02000 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3033 315–0151–00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 01121 CB1515 A4R3033 315–0471–00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1515 A4R3033 315–0471–00 RES,FXD,FILM:100 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:100 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:100 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:470 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:470 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:470 OHM,5%,0.25W 07716 CEAD500R0F | A4R2097 | 311-1917-00 | | | | RES,VAR,NONWW:TRMR,5K OHM,10%,0.5 W | 32997 | 3386C-1-502 | | A4R3011 321–0153–00 | A4R2098 | 315-0390-00 | | | | RES,FXD,FILM:39 OHM,5%,0.25W | 01121 | CB3905 | | A4R3012 321-0857-01 | A4R3010 | 321-0799-02 | | | | RES,FXD,FILM:146.8 OHM,0.5%,0.125W | 01121 | ADVISE | | A4R3020 315-0472-00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3021 315-0470-00 RES,FXD,FILM:47 OHM,5%,0.25W 01121 CB4705 A4R3022 315-043-00 B02000 B024701 RES,FXD,FILM:24K OHM,5%,0.25W 01121 CB4725 A4R3023 315-0243-00 B02000 B024701 RES,FXD,FILM:24K OHM,5%,0.25W 01121 CB4725 A4R3023 315-0472-00 B024701 RES,FXD,FILM:24K OHM,5%,0.25W 01121 CB2435 315-0472-00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3024 321-1087-01 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3030 315-0101-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0151-00 B02000 B024700 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0151-00 B024701 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 A4R3032 321-0612-00 RES,FXD,FILM:130 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:500 OHM,1%,0.125W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | A4R3011 | 321-0153-00 | | | | RES,FXD,FILM:383 OHM,1%,0.125W | 19701 | 5043ED383R0F | | A4R3021 315-0470-00 B020000 B024700 RES,FXD,FILM:47 OHM,5%,0.25W 01121 CB2435 315-0472-00 B024701 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB4725 A4R3024 321-1087-01 RES,FXD,FILM:47K OHM,5%,0.25W 01121 CB4725 A4R3030 315-0101-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0151-00 B020000 B024700 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0131-00 B024701 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 315-0131-00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 07716 CEAD500R0F A4R3032 321-0612-00 RES,FXD,FILM:130 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 071121 CB4715 | A4R3012 | 321-0857-01 | | | | RES,FXD,FILM:360 OHM,0.5%,0.125W | 19701 | 5033RD360R0F | | A4R3022 315-0243-00 B02000 B024700 RES,FXD,FILM:24K OHM,5%,0.25W 01121 CB2435 315-0472-00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W
01121 CB4725 A4R3023 315-0243-00 B020000 B024700 RES,FXD,FILM:24K OHM,5%,0.25W 01121 CB2435 315-0472-00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3024 321-1087-01 RES,FXD,FILM:79.6 OHM,0.5%,0.125W 07716 CEAD79R60D A4R3030 315-0101-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0151-00 B02000 B024700 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 315-0131-00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 19701 5043CX130R0J A4R3032 321-0612-00 RES,FXD,FILM:130 OHM,5%,0.25W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | A4R3020 | 315-0472-00 | | | | RES,FXD,FILM:4.7K OHM,5%,0.25W | 01121 | CB4725 | | 315-0472-00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3023 315-0243-00 B020000 B024700 RES,FXD,FILM:24K OHM,5%,0.25W 01121 CB2435 315-0472-00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3024 321-1087-01 RES,FXD,FILM:79.6 OHM,0.5%,0.125W 07716 CEAD79R60D A4R3030 315-0101-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0151-00 B020000 B024700 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 315-0131-00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 19701 5043CX130R0J A4R3032 321-0612-00 RES,FXD,FILM:500 OHM,1%,0.125W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | A4R3021 | 315-0470-00 | | | | RES,FXD,FILM:47 OHM,5%,0.25W | 01121 | CB4705 | | A4R3023 315-0243-00 B02000 B024700 RES,FXD,FILM:24K OHM,5%,0.25W 01121 CB2435 315-0472-00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3024 321-1087-01 RES,FXD,FILM:79.6 OHM,0.5%,0.125W 07716 CEAD79R60D A4R3030 315-0101-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0151-00 B02000 B024700 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 315-0131-00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 19701 5043CX130R0J A4R3032 321-0612-00 RES,FXD,FILM:500 OHM,1%,0.125W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | A4R3022 | 315-0243-00 | B020000 | B024700 | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | 315-0472-00 B024701 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 A4R3024 321-1087-01 RES,FXD,FILM:79.6 OHM,0.5%,0.125W 07716 CEAD79R60D A4R3030 315-0101-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0151-00 B02000 B024700 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 315-0131-00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 19701 5043CX130R0J A4R3032 321-0612-00 RES,FXD,FILM:500 OHM,1%,0.125W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | | 315-0472-00 | B024701 | | | RES,FXD,FILM:4.7K OHM,5%,0.25W | 01121 | CB4725 | | A4R3024 321–1087–01 RES,FXD,FILM:79.6 OHM,0.5%,0.125W 07716 CEAD79R60D A4R3030 315–0101–00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315–0151–00 B020000 B024700 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 315–0131–00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 19701 5043CX130R0J A4R3032 321–0612–00 RES,FXD,FILM:500 OHM,1%,0.125W 07716 CEAD500R0F A4R3033 315–0471–00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | A4R3023 | 315-0243-00 | B020000 | B024700 | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | A4R3030 315-0101-00 RES,FXD,FILM:100 OHM,5%,0.25W 01121 CB1015 A4R3031 315-0151-00 B020000 B024700 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 315-0131-00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 19701 5043CX130R0J A4R3032 321-0612-00 RES,FXD,FILM:500 OHM,1%,0.125W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | | 315-0472-00 | B024701 | | | RES,FXD,FILM:4.7K OHM,5%,0.25W | 01121 | CB4725 | | A4R3031 315-0151-00 B020000 B024700 RES,FXD,FILM:150 OHM,5%,0.25W 01121 CB1515 315-0131-00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 19701 5043CX130R0J A4R3032 321-0612-00 RES,FXD,FILM:500 OHM,1%,0.125W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | A4R3024 | 321-1087-01 | | | | RES,FXD,FILM:79.6 OHM,0.5%,0.125W | 07716 | CEAD79R60D | | 315-0131-00 B024701 RES,FXD,FILM:130 OHM,5%,0.25W 19701 5043CX130R0J A4R3032 321-0612-00 RES,FXD,FILM:500 OHM,1%,0.125W 07716 CEAD500R0F A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | A4R3030 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R3032 321-0612-00 RES,FXD,FILM:500 OHM,1%,0.125W 07716 CEAD500R0F
A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | A4R3031 | 315-0151-00 | B020000 | B024700 | | RES,FXD,FILM:150 OHM,5%,0.25W | 01121 | CB1515 | | A4R3033 315-0471-00 RES,FXD,FILM:470 OHM,5%,0.25W 01121 CB4715 | | 315-0131-00 | B024701 | | | RES,FXD,FILM:130 OHM,5%,0.25W | 19701 | 5043CX130R0J | | | A4R3032 | 321-0612-00 | | | | RES,FXD,FILM:500 OHM,1%,0.125W | 07716 | CEAD500R0F | | N4R3034 315-0472-00 RES,FXD,FILM:4.7K OHM,5%,0.25W 01121 CB4725 | A4R3033 | 315-0471-00 | | | | RES,FXD,FILM:470 OHM,5%,0.25W | 01121 | CB4715 | | | A4R3034 | 315-0472-00 | | | | RES,FXD,FILM:4.7K OHM,5%,0.25W | 01121 | CB4725 | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|------------------| | A4R3035 | 315-0162-00 | | | | RES,FXD,FILM:1.6K OHM,5%,0.25W | 19701 | 5043EMIK600J | | A4R3036 | 315-0332-00 | | | | RES,FXD,FILM:3.3K OHM,5%,0.25W | 01121 | CB3325 | | A4R3040 | 315-0470-00 | | | | RES,FXD,FILM:47 OHM,5%,0.25W | 01121 | CB4705 | | A4R3041 | 321-0063-00 | | | | RES,FXD,FILM:44.2 OHM,0.5%,0.125W | 01121 | CC | | A4R3042 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R3043 | 315-0100-00 | | | | RES,FXD,FILM:10 OHM,5%,0.25W | 01121 | CB1005 | | A4R3044 | 315-0243-00 | | | | RES,FXD,FILM:24K OHM,5%,0.25W | 01121 | CB2435 | | A4R3045 | 315-0121-00 | | | | RES,FXD,FILM:120 OHM,5%,0.25W | 01121 | CB1215 | | A4R3046 | 315-0102-00 | | | | RES,FXD,FILM:1K OHM,5%,0.25W | 01121 | CB1025 | | A4R3050 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R3051 | 315-0102-00 | | | | RES,FXD,FILM:1K OHM,5%,0.25W | 01121 | CB1025 | | A4R3052 | 315-0121-00 | | | | RES,FXD,FILM:120 OHM,5%,0.25W | 01121 | CB1215 | | A4R3060 | 315-0203-00 | | | | RES,FXD,FILM:20K OHM,5%,0.25W | 01121 | CB2035 | | A4R3061 | 315-0153-00 | | | | RES,FXD,FILM:15K OHM,5%,0.25W | 01121 | CB1535 | | A4R3062 | 315-0163-00 | | | | RES,FXD,FILM:16K OHM,5%,0.25W | 01121 | CB1635 | | A4R3063 | 315-0562-00 | | | | RES,FXD,FILM:5.6K OHM,5%,0.25W | 01121 | CB5625 | | A4R3064 | 315-0103-00 | | | | RES,FXD,FILM:10K OHM,5%,0.25W | 01121 | CB1035 | | A4R3070 | 315-0301-00 | | | | RES,FXD,FILM:300 OHM,5%,0.25W | 01121 | CB3015 | | A4R3071 | 315-0102-00 | | | | RES,FXD,FILM:1K OHM,5%,0.25W | 01121 | CB1025 | | A4R3072 | 315-0103-00 | | | | RES,FXD,FILM:10K OHM,5%,0.25W | 01121 | CB1035 | | A4R3073 | 315-0752-00 | | | | RES,FXD,FILM:7.5K OHM,5%,0.25W | 01121 | CB7525 | | A4R3074 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R3075 | 315-0472-00 | | | | RES,FXD,FILM:4.7K OHM,5%,0.25W | 57668 | NTR25J-E04K7 | | A4R3076 | 315-0102-00 | | | | RES,FXD,FILM:1K OHM,5%,0.25W | 01121 | CB1025 | | A4R3077 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4R3080 | 317-0160-00 | | | | RES,FXD,CMPSN:16 OHM,5%,0.125W | 01121 | BB1605 | | A4R3081 | 317-0821-00 | | | | RES,FXD,CMPSN:820 OHM,5%,0.125W | 01121 | BB8215 | | A4R3082 | 317-0160-00 | | | | RES,FXD,CMPSN:16 OHM,5%,0.125W | 01121 | BB1605 | | A4R3083 | 317-0821-00 | | | | RES,FXD,CMPSN:820 OHM,5%,0.125W | 01121 | BB8215 | | A4R3090 | 315-0103-00 | | | | RES,FXD,FILM:10K OHM,5%,0.25W | 01121 | CB1035 | | A4R3091 | 315-0390-00 | | | | RES,FXD,FILM:39 OHM,5%,0.25W | 01121 | CB3905 | | A4R3092 | 315-0103-00 | | | | RES,FXD,FILM:10K OHM,5%,0.25W | 01121 | CB1035 | | A4R3093 | 321-1068-07 | | | | RES,FXD,FILM:50.5 OHM,0.1%,0.125W | 07716 | CEA | | A4R3094 | 315-0101-00 | | | | RES,FXD,FILM:100 OHM,5%,0.25W | 01121 | CB1015 | | A4T3070 | 120–1394–01 | | | | XFMR,RF:TOROID,1:1,5 TURNS,3UH +/–30% | 0JR03 | 120–1394–01 | | A4T3080 | 120-1397-01 | | | | XFMR,SIG:BIFILAR,460NH,30%,2T,TOROID CORE | 0JR03 | 120-1394-01 | | A4T3081 | 120-1396-01 | | | | XFMR,RF:TOROID,1:1,4 TURNS,1.9UH +/-30% | 0JR03 | 120-1396-01 | | A4TP1080
A4TP1081
A4TP1082
A4TP2030
A4TP3020
A4TP3030
A4TP3040
A4TP3050
A4TP3051 | 214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02 | B010100
B010100
B010100
B010100
B010100
B010100
B010100
B010100
B010100
B010100 | B023052
B023052
B023052
B023052
B023052
B023052
B023052
B023052
B023052 | TERM,TEST POINT: 0.052 ID, 0.169 H, 0.465 L | 10392
10392
10392
10392
10392
10392
10392 | 7–16150–8
7–16150–8
7–16150–8
7–16150–8
7–16150–8
7–16150–8 | |--|--|--|---|---|---|--| |
A4TP1080
A4TP1081
A4TP1082
A4TP2030
A4TP3020
A4TP3030
A4TP3040
A4TP3050
A4TP3051 | 214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02 | B010100
B010100
B010100
B010100
B010100
B010100
B010100
B010100 | B023052
B023052
B023052
B023052
B023052
B023052
B023052 | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392
10392
10392
10392
10392
10392 | 7–16150–8
7–16150–8
7–16150–8
7–16150–8
7–16150–8 | | A4TP1081
A4TP1082
A4TP2030
A4TP3020
A4TP3030
A4TP3040
A4TP3050
A4TP3051 | 214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02 | B010100
B010100
B010100
B010100
B010100
B010100
B010100 | B023052
B023052
B023052
B023052
B023052
B023052 | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392
10392
10392
10392
10392 | 7–16150–8
7–16150–8
7–16150–8
7–16150–8 | | 4TP1082
4TP2030
4TP3020
4TP3030
4TP3040
4TP3050
4TP3051 | 214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02 | B010100
B010100
B010100
B010100
B010100
B010100 | B023052
B023052
B023052
B023052
B023052 | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392
10392
10392
10392 | 7–16150–8
7–16150–8
7–16150–8 | | .4TP2030
.4TP3020
.4TP3030
.4TP3040
.4TP3050
.4TP3051 | 214-0579-02
214-0579-02
214-0579-02
214-0579-02
214-0579-02 | B010100
B010100
B010100
B010100
B010100 | B023052
B023052
B023052
B023052 | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L TERM,TEST POINT:0.052 ID,0.169 H,0.465 L TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392
10392
10392 | 7–16150–8
7–16150–8 | | 4TP3020
4TP3030
4TP3040
4TP3050
4TP3051 | 214-0579-02
214-0579-02
214-0579-02
214-0579-02 | B010100
B010100
B010100
B010100 | B023052
B023052
B023052 | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392
10392 | 7–16150–8 | | 4TP3030
4TP3040
4TP3050
4TP3051
4U1040 | 214–0579–02
214–0579–02
214–0579–02 | B010100
B010100
B010100 | B023052
B023052 | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | | | 4TP3040
4TP3050
4TP3051
4U1040 | 214–0579–02
214–0579–02 | B010100
B010100 | B023052 | | | 7–16150–8 | | 4TP3050
4TP3051
4U1040 | 214-0579-02 | B010100 | | TEDM TEST DOINT O 052 ID 0 140 H 0 445 I | 10000 | | | 4TP3051
4U1040 | | | B023052 | 1 LNIVI, 1 E 3 1 PO IIV 1 . U. U. 2 ID, U. 109 17, U. 403 L | 10392 | 7–16150–8 | | 4U1040 | 214-0579-02 | B010100 | | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | | | | B023052 | TERM,TEST POINT:0.052 ID,0.169 H,0.465 L | 10392 | 7–16150–8 | | | 156-0941-01 | | | IC,DIGITAL:CMOS,GATES;QUAD 2-INPUT NAND | 27014 | MM74C00N/A+ | | 4U1050 | 156-0514-00 | | | IC,MISC:CMOS,ANALOG MUX;DUAL 4 CHANNEL | 04713 | MC14052BCP | | 4U1070 | 156-0853-00 | | | IC,LINEAR:BIPOLAR,OP-AMP;DUAL,SINGLE SUPP | 04713 | LM358N | | 4U1080 | 156-1490-00 | | | IC,LINEAR:VOLTAGE REFERENCE 2-PIN TO 52 | 1ES66 | ICL8069CCSQ2 | | 4U1090 | 156-1291-00 | | | IC,LINEAR:BIFET,OP-AMP;DUAL,LOW POWER | 01295 | TL062CP | | 4U2070 | 156-1291-00 | | | IC,LINEAR:BIFET,OP-AMP;DUAL,LOW POWER | 01295 | TL062CP | | 4U2080 | 156–1149–00 | | | IC,LINEAR:BIFET,OP-AMP,LF351N | 27014 | LF351N | | 4VR2080 | 152-0055-00 | | | DIODE,ZENER:11V,5%,0.4W;1N962B | 04713 | SZG35009K1 1N962BF | | 4VR3020 | 152-0892-00 | | | DIODE,ZENER:5.6V,5%,5W;1N5339B | 04713 | 1N5339B | | 4VR3021 | 152-0892-00 | | | DIODE,ZENER:5.6V,5%,5W;1N5339B | 04713 | 1N5339B | | 4VR3080 | 152-0055-00 | | | DIODE,ZENER:11V,5%,0.4W;1N962B | 04713 | SZG35009K1 1N962BF | | | | | | | | | | 16 | 671-0443-XX | | | CKT BD ASSY:ETHERNET | | | | 6C1010 | 283-0648-00 | | | CAP,FXD,MICA DI:10PF,+/-0.5PF,500V | 09023 | CD15CD100D03 | | 6C1020 | 290-0523-00 | | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | 6C10201 | 290-0523-00 | | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | 6C2020 | 290-0523-00 | | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | 6C2030 | 283-0024-03 | | | CAP,FXD,CER DI:0.1UF,20%,50V,5ZU | 04222 | SR595E104MAAAP1 | | 6C2031 | 283-0024-03 | | | CAP,FXD,CER DI:0.1UF,20%,50V,5ZU | 04222 | SR595E104MAAAP1 | | 6C2032 | 290-0523-00 | | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | 6C2033 | 290-0523-00 | | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | 6C2034 | 290-0523-00 | | | CAP,FXD,ELCTLT:2.2UF,20%,20V TANTALUM | 24165 | 196D225X0020HA1 | | | 283-0024-03 | | | CAP,FXD,CER DI:0.1UF,20%,50V,5ZU | 04222 | SR595E104MAAAP1 | | A6L2030 131–3359–00 CONN,HDR-PCB,MALE,RTANG, 2 X 10,0.1 CTR 80009 131–3359–00 A6K1020 148–0146–00 RELAY,REED:1 FORM A.500VDC,COIL SVDC 12617 ORDER BY DESCR A6L2010 114–0342–00 COIL,RE-VARIABLE,0,95–1.05MH POT CORE 54937 114–0342–00 A6C1020 151–0189–00 XSTR,SIG:BIPOLAR,PNP-MOV,200MA,250MHZ,AMP 03508 X39H3162 A6C1021 151–0190–00 XSTR,SIG:BIPOLAR,NPN-MOV,200MA,300MHZ,AMP 01295 SKA3703 A6C2020 151–0190–00 XSTR,SIG:BIPOLAR,NPN-MOV,200MA,300MHZ,AMP 01295 SKA3703 A6C3000 TST,SIG:BIPOLAR,NPN-MOV,200MA,300MHZ,AMP 01295 SKA3703 A6R1010 321–0222–00 RES,FXD,FILM-200K OHM,0.5%,SW AXIAL LEADS 14193 A5050R0D A6R1011 308–0585–00 RES,FXD,FILM-342,OHM,1%,0.125W 19701 S043E0442R0F A6R1012 321–0159–00 RES,FXD,FILM-342,OHM,1%,0.125W 19701 S043E0442R0F A6R1013 311–1261–00 RES,VAR,NOWNW-TRME,500 OHM,0.5% CERMET 73138 62WR500346D A6R1030 308–0431–00 RES,FXD,FILM-340,OHM,5%,SW AXIAL LEADS 14193 SA31–1200J A6R1031 321–0756–00 RES,FXD,FILM-140,OHM,5%,SW AXIAL LEADS 14193 SA31–1200J A6R1033 321–0318–00 RES,FXD,FILM-140,OHM,5%,SW AXIAL LEADS 14903 SA31–1200J A6R1033 321–0318–00 RES,FXD,FILM-140,OHM,5%,SW AXIAL LEADS 14903 SA31–1200J A6R1033 321–0318–00 RES,FXD,FILM-140,OHM,1%,0.125W 07716 CEAD10000F A6R1033 321–0318–00 RES,FXD,FILM-140,OHM,1%,0.125W 07716 CEAD10000F A6R1034 321–0318–00 RES,FXD,FILM-140,OHM,1%,0.125W 07716 CEAD10000F A6R1034 321–0318–00 RES,FXD,FILM-140,OHM,1%,0.125W 07716 CEAD10001F A6R1034 321–0318–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R1034 321–0318–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R2021 303–0184–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R2021 303–0184–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R2023 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R2023 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD10001F A6R2024 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD10001F A6R2025 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD10001F A6R2025 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD10001F | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |--|----------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|-------------------| | AGCR2022 152-0333-00 DIODE DVC,DISW.SI,55V,200MA 03508 DJ2011 AGCR2023 152-0141-02 DIODE,SIG:ULTRA FAST-40V,150MA 01295 1M4152R AGCR2023 152-0141-02 DIODE,SIG:ULTRA FAST-40V,150MA 01295 1M4152R AGCR2025 152-0141-02 DIODE,SIG:ULTRA FAST-40V,150MA 01295 1M4152R AGCR2025 152-0141-02 DIODE,SIG:ULTRA FAST-40V,150MA 01295 1M4152R AGCR2025 152-0141-02 DIODE,SIG:ULTRA FAST-40V,150MA 01295 1M4152R AGJ2030 131-3359-00 CONN.HDR.PCB.MALE.RTANG,2 X 10,0.1 CTR 80009 131-3359-00 AGK1020 148-0146-00 RELAY,REED:1 FORM A,500VDC, COIL,5VDC 12617 ORDER BY DESCR AGL2010 114-0342-00 COIL,RF.VARIABLE,0.95-1.05MH POT CORE 54937 114-0342-00 AGG1020 151-0188-00 X5TR,SIG.BIPOLAR,PNP-40V,200MA,250MHZ,AMP 01295 SKA3703 AGG1021 151-0190-00 X5TR,SIG.BIPOLAR, NPN-40V,200MA,300MHZ,AMP 01295
SKA3703 AGG2020 151-0190-00 X5TR,SIG.BIPOLAR, NPN-40V,200MA,300MHZ,AMP 01295 SKA3703 AGG1010 321-0222-00 RES,FXD,FILM-2,00K OHM,1%,0,125W 07716 CEAD20000F AGR1011 308-0585-00 RES,FXD,FILM-2,00K OHM,1%,0,125W 19701 5043ED442R0F AGR1012 321-0159-00 RES,FXD,FILM-402 OHM,1%,0,125W 19701 5043ED442R0F AGR1013 311-1261-00 RES,FXD,FILM-402 OHM,5%,1W 01121 GB3305 AGR1031 321-0260-00 RES,FXD,FILM-403 OHM,5%,1W 01121 GB3305 AGR1033 321-0260-00 RES,FXD,FILM-409K OHM,1%,0,125W 07716 CEAD20001F AGR1033 321-0380-00 RES,FXD,FILM-409K OHM,1%,0,125W 07716 CEAD20001F AGR1037 321-0338-00 RES,FXD,FILM-40,90K OHM,1%,0,125W 07716 CEAD20001F AGR1037 321-0338-00 RES,FXD,FILM-40,90K OHM,1%,0,125W 07716 CEAD20001F AGR1037 321-0338-00 RES,FXD,FILM-40,50K OHM,1%,0,125W 07716 CEAD20001F AGR2024 321-0388-00 RES,FXD,FILM-40,50K OHM,1%,0,125W 07716 CEAD20001F AGR2025 321-0388 | A6CR2020 | 152-0752-00 | | | | DIODE DVC,DI:RECT,SI,1A,1500V | 04713 | MR1-1600 | | AGCR2023 152-0141-02 DIODE_SIG-ULTRA FAST-40V_150MA 01295 1N4152R AGCR20234 152-0141-02 DIODE_SIG-ULTRA FAST-40V_150MA 01295 1N4152R AGCR20235 152-0141-02 DIODE_SIG-ULTRA FAST-40V_150MA 01295 1N4152R AGCR20236 152-0141-02 DIODE_SIG-ULTRA FAST-40V_150MA 01295 1N4152R AGL2030 131-3359-00 CONN-HDR-PCB-MALE_RTANG_2 X 10_0.1 CTR 80009 131-3359-00 AGK1020 148-0146-00 RELAY_REED:1 FORM A_500VDC_COIL 5VDC 12617 ORDER BY DESCR AGL2010 114-0342-00 COIL_RF-VARIABLE_0.95-1.05MH POT CORE 54937 114-0342-00 AGC1020 151-0188-00 XSTR_SIG-BIPOLAR_NPN-40V_200MA_250MHZ_AMP 03508 X39H3162 AGC1021 151-0190-00 XSTR_SIG-BIPOLAR_NPN-40V_200MA_250MHZ_AMP 01295 SKA3703 AGC2020 151-0190-00 XSTR_SIG-BIPOLAR_NPN-40V_200MA_300MHZ_AMP 01295 SKA3703 AGC2020 151-0190-00 RES_FXD_FILM-2.00K OHM_1%_0.125W 077116 CEAD20000F AGR1011 302-0222-00 RES_FXD_FILM-2.00K OHM_1%_0.125W 077116 CEAD20000F AGR1011 308-0585-00 RES_FXD_FILM-40C OHM_0.5%_DAWALL_LEADS 14193 SA5050R0D AGR1012 321-0159-00 RES_FXD_FILM-40C OHM_0.5%_DAWALL_LEADS 14193 SA5050R0D AGR1013 311-1261-00 RES_FXD_FILM-40C OHM_0.5%_DAWALL_LEADS 14193 SA5050R0D AGR1030 308-0330-00 RES_FXD_FILM-40C OHM_0.5%_DAWALL_LEADS 14193 SA3050442R0F AGR1031 321-0260-00 RES_FXD_FILM-40C OHM_1%_0.125W 19711 S0438C0442R0F AGR1032 321-0319-00 RES_FXD_FILM-50C OHM_1%_0.125W 19711 S0438C050C0F AGR1033 321-0260-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR1034 321-0318-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR1035 321-0318-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR1034 321-0318-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR1035 321-0338-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR1034 321-0318-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR1035 321-0338-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR1036 321-0388-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR1037 321-0338-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR2023 321-0318-00 RES_FXD_FILM-50C OHM_1%_0.125W 077116 CEAD20001F AGR2023 321-0388-00 RES_FXD_FILM-50C OHM_1 | A6CR2021 | 152-0752-00 | | | | DIODE DVC,DI:RECT,SI,1A,1500V | 04713 | MR1-1600 | | A6CR20234 152-0141-02 DIODE,SIG-ULTRA FAST;40V,150MA 01295 1N4152R A6CR2025 152-0141-02 DIODE,SIG-ULTRA FAST;40V,150MA 01295 1N4152R A6J2030 131-3359-00 CONN,HDR:PCB:MALE;RTANG,2 X 10,0.1 CTR 80009 131-3359-00 A6K1020 148-0146-00 RELAY,REED:1 FORM A,500VDC,COIL 5VDC 12617 ORDER BY DESCR A6J2010 114-0342-00 COILRE;VARIABLE,0.95-1.05MH POT CORE 54937 114-0342-00 A6Q1020 151-0188-00 XSTR:SIG:BIPOLAR PNP;40V,200MA,250MHZ,AMP 03508 X39H3162 A6G1021 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,250MHZ,AMP 01295 SKA3703 A6Q2020 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A6G2020 151-0190-00 XSTR:SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A6G1010 321-0222-00 RES_FXD,FILM;200K OHM,1%,0.125W 07716 CEAD20000F A6GR1011 308-0585-00 RES_FXD,FILM;402 OHM,1%,0.125W 19701 5043E0442R0F A6GR1013 311-1261-00 RES_FXD,FILM;402 OHM,105,0.125W 19701 5043E0442R0F A6GR1030 303-0300-00 RES_FXD,FILM;402 OHM,105,0.125W 19701 5043E0442R0F A6GR1030 303-0310-00 RES_FXD,FILM;402 OHM,1%,0.125W 19701 5033E0442R0F A6GR1031 321-0260-00 RES_FXD,FILM;402 OHM,1%,0.125W 19701 5033E06000F A6GR1033 321-0318-00 RES_FXD,FILM;402 OHM,1%,0.125W 07716 CEAD20001F A6GR1034 321-0318-00 RES_FXD,FILM;402 OHM,1%,0.125W 07716 CEAD20001F A6GR1035 321-0318-00 RES_FXD,FILM;402 OHM,1%,0.125W 07716 CEAD20001F A6GR1034 321-0318-00 RES_FXD,FILM;402 OHM,1%,0.125W 07716 CEAD20001F A6GR1035 321-0318-00 RES_FXD,FILM;402 OHM,1%,0.125W 07716 CEAD20001F A6GR1034 321-0318-00 RES_FXD,FILM;402 OHM,1%,0.125W 07716 CEAD20001F A6GR1034 321-0318-00 RES_FXD,FILM;402 OHM,1%,0.125W 07716 CEAD20001F A6GR2024 321-0384-00 RES_FXD,FILM;402 OHM,1%,0.125W 07716 CEAD20001F A6GR2024 321-0384-00 RES_FXD,FILM;400 OHM,1%,0.125W 07716 CEAD20001F A6GR2024 321-0385-00 RES_FXD,FILM;403 OHM,1%,0.125W 07716 CEAD20001F A6GR2024 321-0385-00 RES_FXD,FILM;403 OHM,1%,0.125W 0771 | A6CR2022 | 152-0333-00 | | | | DIODE DVC,DI:SW,SI,55V,200MA | 03508 | DJ2011 | | AGCR2025 152-0141-02 DIODE.SIG:ULTRA FAST:40V,150MA 01295 IN4152R AGJ2030 131-3359-00 CONN.HDR.PCB.MALE.RTANG; 2 X 10,0.1 CTR 80009 131-3359-00 AGK1020 148-0146-00 RELAY,REED:1 FORM A.500VDC,COIL SVDC 12617 ORDER BY DESCR AGL2010 114-0342-00 COIL.RF.VARIABLE.0.95-1.05MH POT CORE 54937 114-0342-00 AGG1020 151-0188-00 X5TR.SIG:BIPOLAR.PNP-40V,200MA_250MHz,AMP 03508 X39H3162 AGG1021 151-0190-00 X5TR.SIG:BIPOLAR.NPN-40V,200MA_300MHZ,AMP 01295 SKA3703 AGG2020 151-0190-00 X5TR.SIG:BIPOLAR.NPN-40V,200MA_300MHZ,AMP 01295 SKA3703 AGG1010 321-0222-00 RES.FXD.FILM.2.00K OHM.1%.0.125W 07716 CEAD20000F AGR1011 308-0585-00 RES.FXD.WW-50 OHM.0.5%.5W AXIAL LEADS 14193 SA5050R0D AGR1012 321-0159-00 RES.FXD.RW-50 OHM.0.5%.5W AXIAL LEADS 14193 SA5050R0D AGR1013 311-1261-00 RES.FXD.RW-50 OHM.0.5%.5W AXIAL LEADS 14193 SA31-1200J AGR1031 321-0252-00 RES.FXD.RW-50 OHM.0.5%.5W AXIAL LEADS 14193 SA31-1200J AGR1031 321-0250-00 RES.FXD.RW-50 OHM.0.5%.5W AXIAL LEADS 14193 SA31-1200J AGR1031 321-0756-00 RES.FXD.RW-50 OHM.0.5%.5W AXIAL LEADS 14193 SA31-1200J AGR1033 321-0318-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR1033 321-0318-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD10000F AGR1033 321-0318-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD10000F AGR1034 321-0318-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD10000F AGR1037 321-0338-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD10000F AGR1037 321-0338-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR1037 321-0338-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR1037 321-0338-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR2023 321-0318-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR2023 321-0318-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR2023 321-0318-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR2024 321-0383-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR2025 321-0383-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR2026 321-0383-00 RES.FXD.FILM.50 OHM.1%.0.125W 07716 CEAD20001F AGR2026 321-0383-00 RES.FXD.FILM.50 | A6CR2023 | 152-0141-02 | | | | DIODE,SIG:ULTRA FAST;40V,150MA | 01295 | 1N4152R | | A6L2030 131–3359–00 CONN,HDR-PCB,MALE,RTANG, 2 X 10,0.1 CTR 80009 131–3359–00 A6K1020 148–0146–00 RELAY,REED:1 FORM A.500VDC,COIL SVDC 12617 ORDER BY DESCR A6L2010 114–0342–00 COIL,RE-VARIABLE,0,95–1.05MH POT CORE 54937 114–0342–00 A6C1020 151–0189–00 XSTR,SIG:BIPOLAR,PNP-MOV,200MA,250MHZ,AMP 03508 X39H3162 A6C1021 151–0190–00 XSTR,SIG:BIPOLAR,NPN-MOV,200MA,300MHZ,AMP 01295 SKA3703 A6C2020 151–0190–00 XSTR,SIG:BIPOLAR,NPN-MOV,200MA,300MHZ,AMP 01295 SKA3703 A6C3000 TST,SIG:BIPOLAR,NPN-MOV,200MA,300MHZ,AMP 01295 SKA3703 A6R1010 321–0222–00 RES,FXD,FILM-200K OHM,0.5%,SW AXIAL LEADS 14193 A5050R0D A6R1011 308–0585–00 RES,FXD,FILM-342,OHM,1%,0.125W 19701 S043E0442R0F A6R1012 321–0159–00 RES,FXD,FILM-342,OHM,1%,0.125W 19701 S043E0442R0F A6R1013 311–1261–00 RES,VAR,NOWNW-TRME,500 OHM,0.5% CERMET 73138 62WR500346D A6R1030 308–0431–00 RES,FXD,FILM-340,OHM,5%,SW AXIAL LEADS 14193 SA31–1200J A6R1031 321–0756–00 RES,FXD,FILM-140,OHM,5%,SW AXIAL LEADS 14193 SA31–1200J A6R1033 321–0318–00 RES,FXD,FILM-140,OHM,5%,SW AXIAL LEADS 14903 SA31–1200J A6R1033 321–0318–00 RES,FXD,FILM-140,OHM,5%,SW AXIAL LEADS 14903 SA31–1200J A6R1033 321–0318–00 RES,FXD,FILM-140,OHM,1%,0.125W 07716 CEAD10000F A6R1033 321–0318–00 RES,FXD,FILM-140,OHM,1%,0.125W 07716 CEAD10000F A6R1034 321–0318–00 RES,FXD,FILM-140,OHM,1%,0.125W 07716 CEAD10000F A6R1034 321–0318–00 RES,FXD,FILM-140,OHM,1%,0.125W 07716 CEAD10001F A6R1034 321–0318–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R1034 321–0318–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R2021 303–0184–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R2021 303–0184–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R2023 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD24001F A6R2023 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD10001F A6R2024 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD10001F A6R2025 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD10001F A6R2025 321–0385–00 RES,FXD,FILM-100,OHM,1%,0.125W 07716 CEAD10001F | A6CR20234 | 152-0141-02 | | | | DIODE,SIG:ULTRA FAST;40V,150MA | 01295 | 1N4152R | | A6K1020 148-0146-00 RELAY,REED:1 FORM A,500VDC, COIL 5VDC 12617 ORDER BY DESCR A6L2010 114-0342-00 COIL,RF.VARIABLE,0.95-1.05MH POT CORE 54937 114-0342-00 A6Q1020 151-0188-00 X5TR,SIG:BIPOLAR,PNP-40V.200MA,250MH2,AMP 03508 X39H3162 A6Q1021 151-0190-00 X5TR,SIG:BIPOLAR,NPN-40V.200MA,300MH2,AMP 01295 SKA3703 A6Q2020 151-0190-00 X5TR,SIG:BIPOLAR,NPN-40V.200MA,300MH2,AMP 01295 SKA3703 A6R1010 321-0222-00 RES,FXD,FILM-2.00K OHM,1%,0.125W 07716 CEAD20000F A6R1011 308-0585-00 RES,FXD,FILM-442 OHM,1%,0.125W 19701 5043ED442R0F A6R1012 321-0159-00 RES,FXD,FILM-442 OHM,1%,0.125W 19701 5043ED442R0F A6R1013 31-11261-00 RES,ARNONWW.TRMR,500 OHM,0.5W CERMET 7338 62MR500346D A6R1020 303-0330-00 RES,FXD,FILM-50K OHM,1%,0.125W 19701 5033R050K00F A6R1030 308-0431-00 RES,FXD,FILM-10K OHM,1%,0.125W 19701
5033R050K00F A6R1031 321-0756-00 RES,FXD,FILM-10K OHM,1%,0.125W 07716 CEAD20000F A6R1033 321-0390-00 RES,FXD,FILM-10K OHM,1%,0.125W 07716 CEAD20001F A6R1033 321-0318-00 RES,FXD,FILM-49K OHM,1%,0.125W 07716 CEAD20001F A6R1034 321-0318-00 RES,FXD,FILM-20,0K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321-0318-00 RES,FXD,FILM-20,0K OHM,1%,0.125W 07716 CEAD20001F A6R1037 321-0334-00 RES,FXD,FILM-20,0K OHM,1%,0.125W 07716 CEAD20001F A6R1037 321-0334-00 RES,FXD,FILM-20,0K OHM,1%,0.125W 07716 CEAD20001F A6R1037 321-0334-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2021 303-0184-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2022 303-0184-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2023 321-0385-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0983-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0385-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2025 321-0385-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0385-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2025 321-0385-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2026 321-0391-00 RES,FXD,FILM-10,KW OHM,1%,0.125W 07716 CEAD20001F A6R2026 321-0391-00 RES,FX | A6CR2025 | 152-0141-02 | | | | DIODE,SIG:ULTRA FAST;40V,150MA | 01295 | 1N4152R | | A6L2010 114-0342-00 COIL, RF. VARIABLE, 0.95-1.05MH POT CORE 54937 114-0342-00 A6O1020 151-0188-00 X5TR, SIG-BIPOLAR, PNP-40V, 200MA, 250MHZ, AMP 03508 X39H3162 A6O1021 151-0190-00 X5TR, SIG-BIPOLAR, NPN-40V, 200MA, 300MHZ, AMP 01295 SKA3703 A6O2020 151-0190-00 X5TR, SIG-BIPOLAR, NPN-40V, 200MA, 300MHZ, AMP 01295 SKA3703 A6R1010 321-0222-00 RES, FXD, FILM, 2.00K, OHM, 1%, 0.125W 07716 CEAD20000F A6R1011 308-0585-00 RES, FXD, FILM, 42 OHM, 1%, 0.125W 19701 5043ED442R0F A6R1012 321-0159-00 RES, FXD, FILM, 42 OHM, 1%, 0.125W 19701 5043ED442R0F A6R1013 311-1261-00 RES, VAR, NONWW-TRMR, 500 OHM, 0.5W CERMET 73138 62MR500346D A6R1030 303-0330-00 RES, FXD, FILM, 440 OHM, 1%, 0.125W 01121 GB3305 A6R1031 321-0756-00 RES, FXD, FILM, 50K OHM, 1%, 0.125W 19701 5033RD50K00F A6R1031 321-0766-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD10000F A6R1032 321-0193-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD1000F A6R1033 321-0260-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R1034 321-0318-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R1035 321-0318-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R1036 321-0354-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R1037 321-0334-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R1037 321-0334-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R1037 321-0334-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R1036 321-0354-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R2021 303-0184-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R2022 321-0289-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R2022 321-0289-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R2022 321-0289-00 RES, FXD, FILM, 49 KOHM, 1%, 0.125W 07716 CEAD20001F A6R2022 321-0289-00 RES, FXD, FILM, 45 MEG OHM, 1%, 0.125W 07716 CEAD20001F A6R2024 321-0385-00 RES, FXD, FILM, 45 MEG OHM, 1%, 0.125W 07716 CEAD20001F A6R2024 321-0385-00 RES, FXD, FILM, 45 MEG OHM, 1%, 0.125W 07716 CEAD10002F A6R2025 321-0385-00 RES | A6J2030 | 131–3359–00 | | | | CONN,HDR:PCB;MALE,RTANG,2 X 10,0.1 CTR | 80009 | 131–3359–00 | | A6O1020 151-0188-00 XSTR,SIG:BIPOLAR,PNP;40V,200MA,250MHZ,AMP 03508 X39H3162 A6O1021 151-0190-00 XSTR,SIG:BIPOLAR,PNP;40V,200MA,300MHZ,AMP 01295 SKA3703 A6O2020 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A6O2020 151-0190-00 XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP 01295 SKA3703 A6O2020 151-0190-00 RES,FXD,FILM:2,00K OHM,1%,0,125W 07716 CEAD20000F A6O2021 321-0222-00 RES,FXD,FILM:40,016,016,016,016,016,016,016,016,016,01 | A6K1020 | 148-0146-00 | | | | RELAY,REED:1 FORM A,500VDC,COIL 5VDC | 12617 | ORDER BY DESCR | | A6Q1021 151-0190-00 XSTR,SIG:BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A6Q2020 151-0190-00 XSTR,SIG:BIPOLAR,NPN:40V,200MA,300MHZ,AMP 01295 SKA3703 A6R1010 321-0222-00 RES,FXD,FILM:2.00K OHM,1%,0.125W 07716 CEAD20000F A6R1011 308-0585-00 RES,FXD,FILM:2.00K OHM,0.5%,5W AXIAL LEADS 14193 SA5050R0D A6R1012 321-0159-00 RES,FXD,FILM:442 OHM,1%,0.125W 19701 5043ED442R0F A6R1013 311-1261-00 RES,VAR,NONWW:TRMR,500 OHM,0.5W CERMET 73138 62MR500346D A6R1020 303-0330-00 RES,FXD,CMPSN:33 OHM,5%,1W 01121 GB3305 A6R1030 308-0431-00 RES,FXD,CMPSN:33 OHM,5%,1W 01121 GB3305 A6R1031 321-0756-00 RES,FXD,FILM:50K OHM,1%,0.125W 19701 5033RD50K00F A6R1032 321-0193-00 RES,FXD,FILM:10K OHM,1%,0.125W 07716 CEAD10000F A6R1033 321-0260-00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD20001F A6R1034 321-0318-00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1037 321-0334-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1037 321-0334-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2021 303-0184-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2023 321-0385-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2021 303-0184-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD20001F A6R2023 321-0318-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0385-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD20001F A6R2025 321-0385-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10002F | A6L2010 | 114-0342-00 | | | | COIL,RF:VARIABLE,0.95–1.05MH POT CORE | 54937 | 114-0342-00 | | A6Q2020 151-0190-00 XSTR,SIG:BIPOLAR,NPN,40V,200MA,300MHZ,AMP 01295 SKA3703 A6R1010 321-0222-00 RES,FXD,FILM:2.00K OHM,1%,0.125W 07716 CEAD20000F A6R1011 308-0585-00 RES,FXD,WW:50 OHM,0.5%,5W AXIAL LEADS 14193 SA5050R0D A6R1012 321-0159-00 RES,FXD,FILM:442 OHM,1%,0.125W 19701 5043ED442R0F A6R1013 311-1261-00 RES,VAR,NONWW:TRMR,500 OHM,0.5W CERMET 73138 62MR500346D A6R1020 303-0330-00 RES,FXD,CMPSN:33 OHM,5%,1W 01121 GB3305 A6R1030 308-0431-00 RES,FXD,WW:120 OHM,5%,3W AXIAL LEADS 14193 SA31-1200J A6R1031 321-0756-00 RES,FXD,FILM:50K OHM,1%,0.125W 19701 5033RD50K00F A6R1032 321-0193-00 RES,FXD,FILM:1K OHM,1%,0.125W 07716 CEAD10000F A6R1033 321-0260-00 RES,FXD,FILM:499K OHM,1%,0.125W 07716 CEAD 49900F A6R1034 321-0318-00 RES,FXD,FILM:499K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1036 321-0354-00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD20001F A6R1037 321-0334-00 RES,FXD,FILM:49,5K OHM,1%,0.125W 07716 CEAD20001F A6R2020 321-0289-00 RES,FXD,FILM:29,4K OHM,1%,0.125W 07716 CEAD29401F A6R2021 303-0184-00 RES,FXD,FILM:0.0K OHM,1%,0.125W 07716 CEAD29401F A6R2021 303-0184-00 RES,FXD,FILM:0.0K OHM,1%,0.125W 07716 CEAD20001F A6R2021 303-0184-00 RES,FXD,FILM:0.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303-0184-00 RES,FXD,FILM:0.0K OHM,1%,0.125W 07716 CEAD20001F A6R2023 321-0318-00 RES,FXD,FILM:0.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0385-00 RES,FXD,FILM:0.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0385-00 RES,FXD,FILM:0.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0385-00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD10002F A6R2026 321-0391-00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6Q1020 | 151-0188-00 | | | | XSTR,SIG:BIPOLAR,PNP;40V,200MA,250MHZ,AMP | 03508 | X39H3162 | | A6R1010 321–0222–00 RES,FXD,FILM:2.00K OHM,1%,0.125W 07716 CEAD20000F A6R1011 308–0585–00 RES,FXD,WW:50 OHM,0.5%,5W AXIAL LEADS 14193 SA5050R0D A6R1012 321–0159–00 RES,FXD,FILM:442 OHM,1%,0.125W 19701 5043ED442R0F A6R1013 311–1261–00 RES,VAR,NONWW:TRMR,500 OHM,0.5W CERMET 73138 62MR500346D A6R1020 303–0330–00 RES,FXD,CMPSN:33 OHM,5%,1W 01121 GB3305 A6R1030 308–0431–00 RES,FXD,CMPSN:33 OHM,5%,3W AXIAL LEADS 14193 SA31–120UJ A6R1031 321–0756–00 RES,FXD,FILM:50K OHM,1%,0.125W 19701 5033RD50K00F A6R1032 321–0193–00 RES,FXD,FILM:1K OHM,1%,0.125W 97716 CEAD10000F A6R1033 321–0260–00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD 49900F A6R1034 321–0318–00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD 20001F A6R1035 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1036 321–0354–00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD20001F A6R1037 321–0334–00 RES,FXD,FILM:49.K OHM,1%,0.125W 07716 CEAD20001F A6R1037 321–0334–00 RES,FXD,FILM:49.K OHM,1%,0.125W 07716 CEAD247501F A6R2020 321–0289–00 RES,FXD,FILM:49.K OHM,1%,0.125W 07716 CEAD29401F A6R2021 303–0184–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD29401F A6R2021 303–0184–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD20001F A6R2023 321–0318–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321–0383–00 RES,FXD,FILM:20.0K OHM,5%,1W 01121 GB1845 A6R2023 321–0318–00 RES,FXD,FILM:20.0K OHM,5%,1W 01121 GB1845 A6R2024 321–0383–00 RES,FXD,FILM:20.0K OHM,5%,1W 01121 GB1845 A6R2024 321–0383–00 RES,FXD,FILM:20.0K OHM,5%,1W 01121 GB1845 A6R2024 321–0383–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD20001F A6R2024 321–0383–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEA 4.5M 1 PERCEN A6R2024 321–0383–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD10002F A6R2025 321–0385–00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD10002F | A6Q1021 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A6R1011 308-0585-00 RES,FXD,WW:50 OHM,0.5%,5W AXIAL LEADS 14193 SA5050RDD A6R1012 321-0159-00 RES,FXD,FILM:442 OHM,1%,0.125W 19701 5043ED442R0F A6R1013 311-1261-00 RES,VAR,NONWW:TRMR;500 OHM,0.5W CERMET 73138 62MR500346D A6R1020 303-0330-00 RES,FXD,CMPSN:33 OHM,5%,1W 01121 GB3305 A6R1030 308-0431-00 RES,FXD,FILM:50K OHM,5%,3W AXIAL LEADS 14193 SA31-1200J A6R1031 321-0756-00 RES,FXD,FILM:50K OHM,1%,0.125W 19701 5033RD50K00F A6R1032 321-0193-00 RES,FXD,FILM:50K OHM,1%,0.125W 07716 CEAD10000F A6R1033 321-0260-00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD4990F A6R1034 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321-0318-00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD47501F A6R1037 321-0334-00 RES,FXD,FILM:40.5K
OHM,1%,0.125W 07716 CEAD47501F A6R2020 321-0289-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 0 | A6Q2020 | 151-0190-00 | | | | XSTR,SIG:BIPOLAR,NPN;40V,200MA,300MHZ,AMP | 01295 | SKA3703 | | A6R1012 321-0159-00 RES,FXD,FILM:442 OHM,1%,0.125W 19701 5043ED442R0F A6R1013 311-1261-00 RES,VAR,NONWW:TRMR,500 OHM,0.5W CERMET 73138 62MR500346D A6R1020 303-0330-00 RES,FXD,CMPSN:33 OHM,5%,1W 01121 GB3305 A6R1030 308-0431-00 RES,FXD,WW:120 OHM,5%,3W AXIAL LEADS 14193 SA31-1200J A6R1031 321-0756-00 RES,FXD,FILM:51K OHM,1%,0.125W 19701 5033RD50K00F A6R1032 321-0193-00 RES,FXD,FILM:41K OHM,1%,0.125W 07716 CEAD10000F A6R1033 321-0260-00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD20001F A6R1034 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321-0318-00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD47501F A6R1036 321-0354-00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD47501F A6R2020 321-0384-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD49401F A6R2021 303-0184-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303-0184-00 RES,FX | A6R1010 | 321-0222-00 | | | | RES,FXD,FILM:2.00K OHM,1%,0.125W | 07716 | CEAD20000F | | A6R1013 311–1261–00 RES,VAR,NONWW:TRMR,500 OHM,0.5W CERMET 73138 62MR500346D A6R1020 303–0330–00 RES,FXD,CMPSN:33 OHM,5%,1W 01121 GB3305 A6R1030 308–0431–00 RES,FXD,WW:120 OHM,5%,3W AXIAL LEADS 14193 SA31–1200J A6R1031 321–0756–00 RES,FXD,FILM:50K OHM,1%,0.125W 19701 5033RD50K00F A6R1032 321–0193–00 RES,FXD,FILM:1K OHM,1%,0.125W 07716 CEAD10000F A6R1033 321–0260–00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD 49900F A6R1034 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD 20001F A6R1035 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD 20001F A6R1036 321–0354–00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD 20001F A6R1037 321–0334–00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD 2401F A6R2020 321–0289–00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD 29401F A6R2021 303–0184–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD 1001F A6R2021 303–0184–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD 20001F A6R2022 303–0184–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD 20001F A6R2023 321–0318–00 RES,FXD,FILM:20.0K OHM,5%,1W 01121 GB1845 A6R2023 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD 20001F A6R2024 321–0983–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD 20001F A6R2025 321–0385–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD 10002F A6R2026 321–0391–00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD 10002F A6R2026 321–0391–00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD 10002F A6R2026 321–0391–00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD 10002F A6R2026 321–0391–00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD 10002F | A6R1011 | 308-0585-00 | | | | RES,FXD,WW:50 OHM,0.5%,5W AXIAL LEADS | 14193 | SA5050R0D | | A6R1020 303–0330–00 RES,FXD,CMPSN:33 OHM,5%,1W 01121 GB3305 A6R1030 308–0431–00 RES,FXD,WW:120 OHM,5%,3W AXIAL LEADS 14193 SA31–1200J A6R1031 321–0756–00 RES,FXD,FILM:50K OHM,1%,0.125W 19701 5033RD50K00F A6R1032 321–0193–00 RES,FXD,FILM:1K OHM,1%,0.125W 07716 CEAD10000F A6R1033 321–0260–00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD 49900F A6R1034 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321–0318–00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD40001F A6R1036 321–0354–00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD47501F A6R1037 321–0334–00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD29401F A6R2020 321–0289–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303–0184–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 <t< td=""><td>A6R1012</td><td>321-0159-00</td><td></td><td></td><td></td><td>RES,FXD,FILM:442 OHM,1%,0.125W</td><td>19701</td><td>5043ED442R0F</td></t<> | A6R1012 | 321-0159-00 | | | | RES,FXD,FILM:442 OHM,1%,0.125W | 19701 | 5043ED442R0F | | A6R1030 308-0431-00 RES,FXD,WW:120 OHM,5%,3W AXIAL LEADS 14193 SA31-1200J A6R1031 321-0756-00 RES,FXD,FILM:50K OHM,1%,0.125W 19701 5033RD50K00F A6R1032 321-0193-00 RES,FXD,FILM:1K OHM,1%,0.125W 07716 CEAD10000F A6R1033 321-0260-00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD 49900F A6R1034 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321-0318-00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD40001F A6R1036 321-0354-00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD47501F A6R2020 321-0334-00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD29401F A6R2020 321-0289-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303-0184-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303-0184-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2023 321-0318-00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0385-00 R | A6R1013 | 311–1261–00 | | | | RES,VAR,NONWW:TRMR,500 OHM,0.5W CERMET | 73138 | 62MR500346D | | A6R1031 321-0756-00 RES,FXD,FILM:50K OHM,1%,0.125W 19701 5033RD50K00F A6R1032 321-0193-00 RES,FXD,FILM:1K OHM,1%,0.125W 07716 CEAD10000F A6R1033 321-0260-00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD 49900F A6R1034 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1036 321-0354-00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD47501F A6R2020 321-0334-00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD29401F A6R2020 321-0289-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303-0184-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303-0184-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2023 321-0318-00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0983-00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD10002F A6R2026 321-0385-00 RES | A6R1020 | 303-0330-00 | | | | RES,FXD,CMPSN:33 OHM,5%,1W | 01121 | GB3305 | | A6R1032 321-0193-00 RES,FXD,FILM:1K OHM,1%,0.125W 07716 CEAD10000F A6R1033 321-0260-00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD 49900F A6R1034 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1036 321-0354-00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD2001F A6R1037 321-0334-00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD29401F A6R2020 321-0289-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303-0184-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2022 303-0184-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2023 321-0318-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2024 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0385-00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD20001F A6R2025 321-0385-00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F A6R2026 321-0385-00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD10002F RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R1030 | 308-0431-00 | | | | RES,FXD,WW:120 OHM,5%,3W AXIAL LEADS | 14193 | SA31-1200J | | A6R1033 321–0260-00 RES,FXD,FILM:4.99K OHM,1%,0.125W 07716 CEAD 49900F A6R1034 321–0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321–0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1036 321–0354-00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD47501F A6R1037 321–0334-00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD29401F A6R2020 321–0289-00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303–0184-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303–0184-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2023 321–0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321–0983-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2025 321–0385-00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD10002F A6R2026 321–0391-00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F A6R2026 321–0391-00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F | A6R1031 | 321-0756-00 | | | | RES,FXD,FILM:50K OHM,1%,0.125W | 19701 | 5033RD50K00F | | A6R1034 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1035 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1036 321–0354–00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD47501F A6R1037 321–0334–00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD29401F A6R2020 321–0289–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2023 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321–0383–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2025 321–0385–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD10002F A6R2026 321–0391–00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD10002F | A6R1032 | 321-0193-00 | | | | RES,FXD,FILM:1K OHM,1%,0.125W | 07716 | CEAD10000F | | A6R1035 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R1036 321–0354–00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD47501F A6R1037 321–0334–00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD29401F A6R2020 321–0289–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2023 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321–0983–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2025 321–0385–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD10002F A6R2026 321–0391–00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R1033 | 321-0260-00 | | | | RES,FXD,FILM:4.99K OHM,1%,0.125W | 07716 | CEAD 49900F | | A6R1036 321–0354–00 RES,FXD,FILM:47.5K OHM,1%,0.125W 07716 CEAD47501F A6R1037 321–0334–00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD29401F A6R2020 321–0289–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2023 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321–0983–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEA 4.5M 1 PERCEN A6R2025 321–0385–00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F A6R2026 321–0391–00
RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R1034 | 321-0318-00 | | | | RES,FXD,FILM:20.0K OHM,1%,0.125W | 07716 | CEAD20001F | | A6R1037 321–0334–00 RES,FXD,FILM:29.4K OHM,1%,0.125W 07716 CEAD29401F A6R2020 321–0289–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2023 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321–0983–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEAD 4.5M 1 PERCEN A6R2025 321–0385–00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD10002F A6R2026 321–0391–00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R1035 | 321-0318-00 | | | | RES,FXD,FILM:20.0K OHM,1%,0.125W | 07716 | CEAD20001F | | A6R2020 321–0289–00 RES,FXD,FILM:10.0K OHM,1%,0.125W 07716 CEAD10001F A6R2021 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303–0184–00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2023 321–0318–00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321–0983–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEA 4.5M 1 PERCEN A6R2025 321–0385–00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F A6R2026 321–0391–00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R1036 | 321-0354-00 | | | | RES,FXD,FILM:47.5K OHM,1%,0.125W | 07716 | CEAD47501F | | A6R2021 303-0184-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2022 303-0184-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2023 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0983-00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEA 4.5M 1 PERCEN A6R2025 321-0385-00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F A6R2026 321-0391-00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R1037 | 321-0334-00 | | | | RES,FXD,FILM:29.4K OHM,1%,0.125W | 07716 | CEAD29401F | | A6R2022 303-0184-00 RES,FXD,CMPSN:180K OHM,5%,1W 01121 GB1845 A6R2023 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0983-00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEA 4.5M 1 PERCEN A6R2025 321-0385-00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F A6R2026 321-0391-00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R2020 | 321-0289-00 | | | | RES,FXD,FILM:10.0K OHM,1%,0.125W | 07716 | CEAD10001F | | A6R2023 321-0318-00 RES,FXD,FILM:20.0K OHM,1%,0.125W 07716 CEAD20001F A6R2024 321-0983-00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEA 4.5M 1 PERCEN A6R2025 321-0385-00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F A6R2026 321-0391-00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R2021 | 303-0184-00 | | | | RES,FXD,CMPSN:180K OHM,5%,1W | 01121 | GB1845 | | A6R2024 321–0983–00 RES,FXD,FILM:4.5 MEG OHM,1%,0.125W 07716 CEA 4.5M 1 PERCEN
A6R2025 321–0385–00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F
A6R2026 321–0391–00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R2022 | 303-0184-00 | | | | RES,FXD,CMPSN:180K OHM,5%,1W | 01121 | GB1845 | | A6R2025 321-0385-00 RES,FXD,FILM:100K OHM,1%,0.125W 07716 CEAD10002F
A6R2026 321-0391-00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R2023 | 321-0318-00 | | | | RES,FXD,FILM:20.0K OHM,1%,0.125W | 07716 | CEAD20001F | | A6R2026 321–0391–00 RES,FXD,FILM:115K OHM,1%,0.125W 07716 CEAD11502F | A6R2024 | 321-0983-00 | | | | RES,FXD,FILM:4.5 MEG OHM,1%,0.125W | 07716 | CEA 4.5M 1 PERCEN | | | A6R2025 | 321-0385-00 | | | | RES,FXD,FILM:100K OHM,1%,0.125W | 07716 | CEAD10002F | | A6R2027 321-0756-00 RES,FXD,FILM:50K OHM,1%,0.125W 19701 5033RD50K00F | A6R2026 | 321-0391-00 | | | | RES,FXD,FILM:115K OHM,1%,0.125W | 07716 | CEAD11502F | | | A6R2027 | 321-0756-00 | | | | RES,FXD,FILM:50K OHM,1%,0.125W | 19701 | 5033RD50K00F | | Assy
Number | Tektronix
Part Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |----------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|---------------------| | A6R2030 | 321-0373-00 | | | | RES,FXD,FILM:75.0K OHM,1%,0.125W | 07716 | CEAD75001F | | A6R2031 | 321-0367-00 | | | | RES,FXD,FILM:64.9K OHM,1%,0.125W | 07716 | CEAD64901F | | A6R2032 | 321-0097-00 | | | | RES,FXD,FILM:100 OHM,1%,0.125W | 07716 | CEAD100R0F | | A6R2033 | 321-0097-00 | | | | RES,FXD,FILM:100 OHM,1%,0.125W | 07716 | CEAD100R0F | | A6R2034 | 321-0260-00 | | | | RES,FXD,FILM:4.99K OHM,1%,0.125W | 07716 | CEAD 49900F | | A6U1030 | 156–1699–00 | | | | IC,LINEAR:DUAL BI-FET,OPNL AMP | 01295 | TL288CP | | A6U1031 | 156-0514-00 | | | | IC,MISC:CMOS,ANALOG MUX;DUAL 4 CHANNEL | 04713 | MC14052BCP | | A6U2030 | 156–1437–00 | | | | IC,LINEAR:BIPOLAR,VOLT REF;POS,5V,1.0% | 04713 | MC1404AU5 | | A6VR2020 | 152-0055-00 | | | | DIODE,ZENER:11V,5%,0.4W | 04713 | SZG35009K1 1N962BRL | | A6VR2021 | 152-0055-00 | | | | DIODE,ZENER:11V,5%,0.4W | 04713 | SZG35009K1 1N962BRL | | A6VR2030 | 152–0514–00 | | | | DIODE,ZENER:10V,1%,0.4W | 04713 | MZ4104D | | | | | | | WIRE ASSEMBLIES | | | | W2010 | 174-0950-00 | | | | CA ASSY,SP,ELEC:26,28 AWG,11.0L | 80009 | 174-0950-00 | | W2020 | 174–1539–00 | | | | CA ASSY,SP,ELEC:4,22 AWG,9.0 L,RIBBON
(FROM A3A1J2010 TO BATT – INCLUDES 5A FUSE) | 80009 | 174–1539–00 | | W3010 | 174-0956-00 | | | | CA ASSY,RF:50 OHM COAX,2.9L
(FROM A4J3010 TO J100 FRONT PANEL) | 80009 | 174-0956-00 | | W5040 | 174-0953-00 | | | | CA ASSY,SP,ELEC:14,26 AWG,6.125L
(FROM A3A1J1030 TO A1A1J5040) | 80009 | 174-0953-00 | | W6010 | 174-0951-00 | | | | CA ASSY,SP,ELEC:20,28 AWG,300V,RMS
(FROM DISPLAY MODULE A5 AND A2A1J1020 TO
A1A1J6010) | 80009 | 174–0951–00 | | W9010 | 174–1014–00 | | | | CA ASSY,SP,ELEC:20,28 AWG,RIBBON
(FOR STANDARD INSTRUMENT AND OPTION 06)
(FROM A4J3040 TO A6J2030 TO A1A1J9010) | 80009 | 174–1014–00 | | J101 | 174–0957–00 | B010100 | B023217 | | CA ASSY,PWR:2 STRAND W/CONN
(FROM A3A1J1010 TO TRANS A3T201) | 80009 | 174-0957-00 | | | 198–5460–01 | | | | WIRE SET,ELEC:POWER SUPPLY MODULE
(CONN AND GROUND WIRES, SET OF TWO) | 80009 | 198–5460–01 | # **Diagrams** #### **General Information** #### **Assembly Numbers** Each assembly in the instrument is assigned an assembly number (e.g., A1). The assembly number appears in the title block of the schematic diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram component locator. The replaceable parts list is arranged by assemblies in numerical sequence: the components are listed by component number. #### **Grid Coordinates** The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for to help you locate the component. #### **Electrical Parts Locator** The component locator lookup table provides an alphanumeric listing of all circuit numbers for the circuit boards in the instrument. Corresponding to each circuit number is a schematic page reference, the locator for that schematic page, and the locator for the circuit board. The locator lists are given for each circuit board, ordered by that board's assembly number: An example entry is as follows: | | Schematic | Schematic | Board | |--------|--------------|--------------|--------------| | | Page | Locator | Locator | | | \downarrow | \downarrow | \downarrow | | C10306 | 2B | D8 | C1 | Read: Capacitor C10306 is found on schematic 2B in grid D8. Its physical location is grid C1 on the circuit board. A locator list and circuit board grid are also given on each circuit board illustration. #### **Schematic Symbols** Graphic symbols and class designation letters are based on ANSI standards. Logic symbology reflects the actual part function, not the logic function performed. Therefore, logic symbols should reflect manufacturer's data. #### **Component Values** Electrical components shown on the diagrams are in the following units: Resistors = Ohm (Ω) Capacitors = Farad(F) Inductors = Henry(H) All capacitors and inductors indicate their units; resistors only indicate the appropriate scale factor. Scale factors are given by the following standard: | M | mega | 10^{6} | |---|-----------|------------| | k | kilo | 10^{3} | | m | milli | 10^{-3} | | u | micro (µ) | 10^{-6} | | n | nano | 10^{-9} | | p | pico | 10^{-12} | #### **Component Number** A numbering method is used to identify assemblies, subassemblies, and parts. An example of this numbering method and typical expansions is as follows: Read: resistor 1234 of subassembly 2 of assembly 23. Only circuit numbers appear on the schematics, circuit board illustrations, and electrical parts locator lists. Each schematic and illustration is marked with its assembly number. Assembly numbers are also marked on the mechanical exploded view located in the replaceable mechanical parts list. A component number is obtained by adding the assembly number prefix to the circuit number. The component number may then be used to reference a part in the replaceable electrical parts list. Figure 9-1: Special Schematic Symbols A1 - MAIN | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOC <i>E</i>
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOC <i>A</i>
SCHEM | TION
BRD | |-------------------|---------------|---------------|--------------|-------------------|---------------|-----------------------|--------------|-------------------|---------------|-----------------------|-------------| | BT1010 | 2 | G2 | A1 | C3020 | 2 | B4 | B3 | C7030 | 8B | D2 | C7 | | | | | | C3021 | 8A | E4 | В3 | C7040 | 6 | D2 | D7 | | C1010 | 2 | G4 | A1 | C3022 | 8A | E4 | В3 | C7041 | 6 | G1 | D7 | | C1011 | 2 | A4 | A1 | C3023 | 8A | D3 | B3 | C7042 | 6 | G1 | D7 | | C1020 | 2 | B4 | B1 | C3030 | 8B | A1 | C3 | C7043 | 1 | F2 | D7 | | C1021 | 2 | D1 | B1 | C3040 | 8B |
A2 | D3 | C8010 | 8A | F2 | A8 | | C1022 | 2 | E2 | B1 | 000.0 | 0.2 | · .= | | 000.0 | 0, . | . – | , .0 | | C1023 | 2 | E1 | B1 | C3041 | 6 | C3 | D3 | C8020 | 8A | D2 | В8 | | 0.020 | _ | | | C3042 | 6 | G2 | D3 | C8021 | 8A | C2 | B8 | | C1024 | 2 | F1 | B1 | C3043 | 6 | B2 | D3 | C8022 | 8A | A1 | В8 | | C1030 | 2 | C1 | C1 | C3044 | 6 | B2 | D3 | C8023 | 8B | G4 | B8 | | C1031 | 2 | A4 | C1 | C3045 | 6 | H1 | D3 | C8024 | 8B | E2 | B8 | | C1032 | 2 | F1 | C1 | C3046 | 6 | H1 | D3 | C8040 | 6 | C2 | D8 | | C1040 | 3 | B4 | D1 | | ū | | | | ŭ | ~ - | _ • | | C1041 | 3 | B4 | D1 | C3047 | 8B | A2 | D3 | C9010 | 8A | G2 | A9 | | | | | | C3048 | 8B | A1 | D3 | C9011 | 8A | F1 | Α9 | | C1042 | 1 | G2 | D1 | C4020 | 8B | D3 | B4 | C9020 | 8A | D1 | В9 | | C1043 | 2 | A4 | D1 | C4021 | 8A | E3 | B4 | C9021 | 8A | C1 | В9 | | C2010 | 5 | G3 | A2 | C4022 | 8A | G3 | B4 | C9022 | 8A | D2 | В9 | | C2011 | 5 | G2 | A2 | C4030 | 8B | B1 | C4 | C9023 | 8A | C2 | В9 | | C2012 | 2 | B4 | A2 | | | | | | | | | | C2013 | 4 | A4 | A2 | C4040 | 8B | C2 | D4 | C9024 | 8A | C1 | В9 | | | | | | C4041 | 1 | F2 | D4 | C9025 | 8B | G4 | В9 | | C2014 | 4 | B4 | A2 | C5010 | 8B | E3 | A5 | C9030 | 5 | B1 | C9 | | C2015 | 5 | F3 | A2 | C5020 | 8B | D4 | B5 | C9031 | 5 | C1 | C9 | | C2016 | 5 | F2 | A2 | C5021 | 8B | B4 | B5 | C9032 | 5 | B1 | C9 | | C2020 | 3 | B4 | B2 | C5022 | 8B | B3 | B5 | C9033 | 5 | B2 | C9 | | C2021 | 7 | B4 | B2 | | | | | | | | | | C2030 | 7 | C4 | C2 | C5023 | 8B | F2 | B5 | C9034 | 5 | B1 | C9 | | | | | | C5024 | 8B | G3 | B5 | C9035 | 5 | C1 | C9 | | C2031 | 7 | B2 | C2 | C5025 | 8B | G3 | B5 | | | | | | C2032 | 7 | C4 | C2 | C5030 | 8B | E3 | C5 | CR1020 | 2 | F2 | B1 | | C2033 | 7 | C4 | C2 | C5031 | 8B | C1 | C5 | CR1021 | 2 | F2 | B1 | | C2034 | 7 | D4 | C2 | C5032 | 8B | C2 | C5 | CR1022 | 2 | F1 | B1 | | C2035 | 7 | D4 | C2 | | | _ | _ | CR1023 | 2 | F1 | B1 | | C2036 | 7 | D4 | C2 | C5033 | 8B | B3 | C5 | CR3031 | 8B | B2 | C3 | | | _ | | 0 - | C5040 | 6 | F2 | D5 | CR4030 | 8A | F3 | C4 | | C2037 | 7 | E4 | C2 | C5041 | 6 | G1 | D5 | OD 1001 | 65 | 4.0 | 0.1 | | C2038 | 7 | E4 | C2 | C5042 | 6 | G1 | D5 | CR4031 | 8B | A3 | C4 | | C2039 | 6 | B1 | C2 | C6030 | 8B | E2 | C6 | CR4032 | 8B | C2 | C4 | | C2040 | 6 | C3 | D2 | C6031 | 8B | B1 | C6 | CR5030 | 8B | C3 | C5 | | C2041 | 6 | D3 | D2 | 00000 | 65 | D.4 | 00 | CR5040 | 8B | B2 | D5 | | C2042 | 6 | В3 | D2 | C6032 | 8B | D1 | C6 | CR8020 | A8 | C2 | B8 | | 00040 | • | - 4 | D.C | C7010 | 8B | G1 | A7 | CR9010 | 8A | G2 | A9 | | C2043 | 6 | E4 | D2 | C7020 | 8B | G1 | B7 | 10040 | 4 | 00 | 4.0 | | C2044 | 7 | E4 | D2 | C7021 | 8B | E1 | B7 | J2010 | 1 | C3 | A2 | | C2045 | 7 | B2 | D2 | C7022 | 8B | F2 | B7 | J5040 † | 1 | E2 | D5 | | C2046 | 6 | D3 | D2 | C7023 | 8B | D2 | В7 | J6010 | 1 | F3 | A6 | [†] Back Side Components A1 – MAIN | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | ATION
BRD | |-------------------|---------------|---------------|--------------|-------------------|---------------|---------------|--------------|-------------------|---------------|---------------|--------------| | J9010 | 1 | B2 | A9 | R1032 | 2 | C1 | C1 | R4043 | 6 | H3 | D4 | | | | | | R1033 | 2 | B2 | C1 | R4044 | 6 | H3 | D4 | | L5030 | 8B | C2 | C5 | R1035 | 2 | C1 | C1 | R4045 | 6 | H3 | D4 | | L5040 | 1 | G2 | D5 | R2010 | 5 | F2 | A2 | R4046 | 6 | H2 | D4 | | | • | | | R2011 | 5 | E2 | A2 | R4047 | 6 | H2 | D4 | | Q1010 | 5 | F3 | A1 | R2012 | 5 | F1 | A2 | R4048 | 1 | E2 | D4 | | Q1020 | 2 | F1 | B1 | 112012 | Ü | | , | 111010 | • | | ٠. | | Q1021 | 2 | F2 | B1 | R2013 | 5 | F2 | A2 | R5020 | 8B | A4 | B5 | | Q1030 | 2 | F1 | C1 | R2014 | 4 | F2 | A2 | R5021 | 8B | B3 | B5 | | Q1030
Q1031 | 2 | F1 | C1 | R2014 | 4 | F3 | A2 | R5021 | 8B | B3 | B5 | | | | | | | 7 | F1 | | | | | | | Q2011 | 5 | F2 | A2 | R2030 | | | C2 | R5023 | 8B | A3 | B5 | | 00010 | _ | 00 | 4.0 | R2031 | 7 | D3 | C2 | R5024 | 8B | G3 | B5 | | Q2012 | 5 | G2 | A2 | R2033 | 8B | C1 | C2 | R5025 | 8B | G3 | B5 | | Q3030 | 8A | E3 | C3 | | | | | | | | | | Q4030 | 8A | F3 | C4 | R2034 | 8B | B1 | C2 | R5026 | 8B | E2 | B5 | | Q4031 | 8B | B2 | C4 | R2040 | 6 | E4 | D2 | R5030 | 8B | E2 | C5 | | Q4040 | 8B | B2 | D4 | R2041 | 7 | G3 | D2 | R5031 | 8B | D2 | C5 | | Q5020A | 8B | E2 | B5 | R2042 | 7 | G2 | D2 | R5032 | 8B | D1 | C5 | | | | | | R2043 | 7 | A2 | D2 | R5033 | 8B | C2 | C5 | | Q5020B | 8B | E2 | B5 | R3010 | 2 | C2 | A3 | R5034 | 8B | C1 | C5 | | Q5030 | 8B | D2 | C5 | | | | | | | | | | Q5031 | 8B | D2 | C5 | R3020 | 8A | C4 | В3 | R5035 | 8B | C2 | C5 | | Q5032A | 8B | C2 | C5 | R3030 | 8A | D3 | C3 | R6030 | 8B | D2 | C6 | | Q5032B | 8B | C2 | C5 | R3031 | 8A | C3 | C3 | R6031 | 8B | C2 | C6 | | Q6020 | 8B | F2 | B6 | R3032 | 8A | C3 | C3 | R6032 | 8B | C1 | C6 | | Q0020 | OB | | Во | R3033 | 8A | C3 | C3 | R6033 | 8B | D1 | C6 | | Q7020 | 8B | G2 | В7 | R3034 | 8A | E3 | C3 | R6040 | 6 | F4 | D6 | | Q7021 | 8B | E2 | B7 | 110004 | 0/1 | LO | 00 | 110040 | O | 1 7 | В | | Q7021 | 8B | D2 | C7 | R3035 | 8A | F3 | C3 | R6041 | 6 | F3 | D6 | | Q8020 | 8A | D2 | B8 | R3036 | 8A | F3 | C3 | R6042 | | F3 | D6 | | Q8020
Q9010 | 8A | E2 | A9 | R3037 | 8A | B3 | C3 | R6043 | 6 | F3 | D6 | | | | C2 | | | | | C3 | | 6 | | | | Q9020A | 8A | C2 | В9 | R3038 | 8B | B2 | | R6044 | 6 | F3 | D6 | | 000000 | 0.4 | Do | Do | R3039 | 8B | B2 | C3 | R6045 | 6 | F3 | D6 | | Q9020B | 8A | D2 | B9 | R3040 | 8B | B2 | D3 | R6046 | 6 | F2 | D6 | | Q9021 | 8A | B1 | B9 | | | | | | | | | | | _ | | | R3041 | 8B | A2 | D3 | R6047 | 6 | F2 | D6 | | R1010 | 2 | G2 | A1 | R3042 | 8B | A1 | D3 | R7010 | 8A | G2 | A7 | | R1011 | 5 | D3 | A1 | R4020 | 8A | D4 | B4 | R7011 | 5 | E2 | A7 | | R1012 | 5 | D3 | A1 | R4021 | 8A | E3 | B4 | R7012 | 8B | G1 | A7 | | R1013 | 5 | E3 | A1 | R4022 | 8A | C3 | B4 | R7013 | 8B | G1 | A7 | | R1014 | 5 | F3 | A1 | R4023 | A8 | F3 | B4 | R7014 | 8B | F2 | A7 | | R1015 | 5 | E3 | A1 | | | | | | | | | | | | | | R4030 | 8A | G3 | C4 | R7015 | 8B | G2 | A7 | | R1016 | 5 | F3 | A1 | R4031 | 8B | B2 | C4 | R7020 | 8B | F2 | B7 | | R1020 | 2 | E2 | B1 | R4032 | 8B | В3 | C4 | R7021 | 8B | F2 | B7 | | R1021 | 2 | F1 | B1 | R4040 | 6 | H4 | D4 | R7022 | 8B | F1 | B7 | | R1022 | 2 | F1 | B1 | R4041 | 6 | H3 | D4 | R7023 | 8B | E1 | B7 | | R1023 | 2 | E1 | B1 | R4042 | 6 | H3 | D4 | R7024 | 8B | F1 | B7 | | 111020 | _ | -1 | וט | 117072 | U | 110 | D4 | 117024 | JD | | וט | A1 – MAIN | CIRCUIT
NUMBER | SCHEM
PAGE | LOC <i>A</i>
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOC/
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | TION
BRD | |-------------------|---------------|-----------------------|--------------|-------------------|---------------|---------------|--------------|-------------------|---------------|---------------|-------------| | R7025 | 8B | E2 | B7 | R9023 | 8A | D2 | B9 | U1034 | 7 | B1 | C1 | | R7026 | 8B | F2 | B7 | R9024 | 8A | D2 | B9 | U1040A | 3 | B3 | D1 | | R7020 | 8B | F2 | B7 | R9025 | 8A | C2 | B9 | U1040A | 3 | C3 | D1 | | R7027 | 8B | F3 | | | | | | | | | D1 | | | | | B7 | R9026 | 8A | B1 | B9 | U1041A | 3 | D4 | | | R7029 | 8B | F1 | B7 | R9027 | 8A | B1 | B9 | U1041B | 3 | E4 | D1 | | R7030 | 8B | F2 | C7 | R9030 | 5 | B2 | C9 | U1042A | 3 | C4 | D1 | | R7031 | 8B | E2 | C7 | R9031 | 5 | B2 | C9 | U1042B | 3 | B1 | D1 | | R7032 | 8B | D2 | C7 | R9032 | 5 | B2 | C9 | U1042C | 3 | B3 | D1 | | R7033 | 8B | D2 | C7 | | | | | U1043A | 2 | D2 | D1 | | R7034 | 8B | D2 | C7 | TP1040 | 2 | C1 | D1 | U1043B | 3 | E2 | D1 | | R7040 | 1 | F2 | D7 | TP1041 | 7 | E1 | D1 | U1043C | 2 | В3 | D1 | | R8010 | 8A | F2 | A8 | TP2040 | 7 | B1 | D2 | U1043D | 2 | C3 | D1 | | | J | | | TP3040 | 7 | G3 | D3 | | _ | - • | | | R8011 | 8A | E2 | A8 | TP3041 | 7 | G3 | D3 | U2011 | 4 | D1 | A2 | | R8012 | 8A | E2 | A8 | TP4020 | 8A | H4 | B4 | U2012A | 4 | D3 | A2 | | R8013 | 8A | E2 | A8 | 11 4020 | U/A | 117 | דט | U2012A | 4 | D3 | A2 | | R8014 | 8A | D2 | A8 | TP4021 | 8A | НЗ | В4 | U2020 | 2 | D3 | B2 | | R8020 | 8A | D2 | B8 | TP4040 | 6 | H2 | D4 | U2020 | 3 | E3 | B2 | | | | E2 | | | | ⊓∠
F4 | | | | | | | R8021 | 8A | EZ | B8 | TP6010 | 8B | | A6 | U2022 | 3 | G1 | B2 | | Dagge | 0.4 | го. | Do | TP7010 | 8B | G2 | A7 | 1,100004 | 0 | 0.4 | DO | | R8022 | 8A | E2 | B8 | TP9010 | 8B | E3 | A9 | U2023A | 2 | C4 | B2 | | R8023 | 8A | E2 | B8 | TP9011 | 8A | G2 | A9 | U2023B | 3 | G3 | B2 | | R8024 | 8A | D2 | B8 | | | | | U2024 | 3 | F2 | B2 | | R8025 | 8A | C2 | B8 | TP9040 | 8A | B2 | D9 | U2025A | 7 | F1 | B2 | | R8026 | 8A | B2 | B8 | TP9041 | 6 | A2 | D9 | U2025B | 7 | G1 | B2 | | R8027 | 8A | B1 | B8 | | | _ | | U2026 | 3 | F2 | B2 | | | | | | U1010 | 2 | G2 | A1 | | | | | | R8028 | 8A | B1 | B8 | U1011A | 4 | D4 | A1 | U2027A | 7 | C4 | B2 | | R8040 | 6 | E3 | D8 | U1011B | 5 | C3 | A1 | U2027B | 7 | A4 | B2 | | R8041 | 6 | E3 | D8 | U1012A | 5 | E2 | A1 | U2030 | 7 | B2 | C2 | | R8042 | 6 | E3 | D8 | U1012B | 5 | E3 | A1 | U2031 | 7 | C1 | C2 | | R8043 | 6 | E2 | D8 | U1020 | 2 | G3 | B1 | U2032 | 7 | C2 | C2 | | R8044 | 6 | C2 | D8 | | | | | U2033A | 3 | B2 | C2 | | | | | | U1021 | 2 | E3 | B1 | | | | | | R8045 | 6 | C2 | D8 | U1022 | 2 | E2 | B1 | U2033B | 7 | F1 | C2 | | R8046 | 6 | C2 | D8 | U1023 | 2 | D1 | B1 | U2034A | 7 | G1 | C2 | | R8047 | 6 | C2 | D8 | U1030 | 2 | B1 | C1 | U2034B | 7 | E2 | C2 | | R9010 | 8A | H2 | A9 | U1031A | 2 | G2 | C1 | U2034C | 7 | C3 | C2 | | R9011 | 8A | H2 | A9 | U1031B | 2 | C1 | C1 | U2034D | 7 | В4 | C2 | | R9012 | 8A | F2 | A9 | | _ | | | U2036 | 7 | E2 | C2 | | | | _ | | U1031C | 3 | B2 | C1 | | - | _ | | | R9013 | 8A | F1 | A9 | U1031D | 2 | C1 | C1 | U2037 | 7 | E3 | C2 | | R9014 | 8A | E2 | A9 | U1031E | 2 | A2 | C1 | U2040A | 6 | B3 | D2 | | R9015 | 8A | E1 | A9 | U1031E | 2 | A3 | C1 | U2040A | 5 | B3 | D2 |
| R9020 | 8A | E1 | B9 | U10311 | 2 | B1 | C1 | U2040C | 3 | C2 | D2 | | R9020 | 8A | C1 | B9 | U1032A | 2 | B2 | C1 | U2040C | 7 | E1 | D2 | | R9021 | 8A | C2 | B9 | 010320 | _ | ے ت | 01 | U2040D | 6 | C3 | D2 | | 113022 | | | שט | | | | | 02041 | <u> </u> | | <i>D</i> 2 | # A1 – MAIN | CIRCUIT | SCHEM | LOC <i>A</i> | ATION | |--|-------------------------------|----------------------------------|----------------------------------| | NUMBER | PAGE | SCHEM | BRD | | U2042A
U2042B
U2043
U2044
U2045A
U2045B | 7
7
7
6
7 | D1
D1
D3
B1
G2
G3 | D2
D2
D2
D2
D2
D2 | | U2045C | 7 | G3 | D2 | | U2046 | 6 | B3 | D2 | | U3010 | 2 | B3 | A3 | | U3020A | 3 | F4 | B3 | | U3020B | 3 | F4 | B3 | | U3020C | 3 | B3 | B3 | | U3020D
U3021
U3022
U3023
U3040
U3041 | 3
8A
8A
8A
6
6 | B4
B3
B4
C3
B3
B2 | B3
B3
B3
B3
D3 | | U3042 | 6 | G2 | D3 | | U4020 | 8B | C3 | B4 | | U4021A | 8A | D4 | B4 | | U4021B | 8A | G3 | B4 | | U4040 | 6 | G3 | D4 | | U5010 | 8B | E4 | A5 | | U5020 | 8B | B4 | B5 | | U5040 | 6 | E2 | D5 | | U6040 | 6 | E3 | D6 | | U7010A | 8A | G1 | A7 | | U7010B | 8A | D3 | A7 | | U7040 | 6 | D2 | D7 | | U8010A
U8010B
U8010C
U8040
U8041
U9030 | 8A
8A
8A
6
6 | G2
F2
F2
D3
C2
C1 | A8
A8
A8
D8
D8
C9 | | VR3030 | 8A | B3 | C3 | | VR6030 | 8B | C1 | C6 | #### **A2 – FRONT PANEL** | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | TION
BRD | |-------------------|---------------|---------------|--------------|-------------------|---------------|---------------|--------------|-------------------|---------------|---------------|-------------| | C1011 | 10B | D1 | A1 | R1021 | 10A | C1 | B1 | U2010A | 10B | D1 | A2 | | C1015 | 10A | B1 | A1 | R1022A | 10B | C3 | B1 | U2010B | 10C | D2 | A2 | | C2010 | 10A | A3 | A2 | R1022B | 10B | C4 | B1 | U2020A | 10A | B1 | B2 | | C2011 | 10A | A3 | A2 | R1022B | 10B | C2 | B1 | U2020B | 10R | C3 | B2 | | C2020 | 10A | C1 | B2 | R1023 | 10A | B1 | B1 | U2020B | 10B | C1 | B2 | | C2020 | 10A | E1 | B2 | R1024 | 10A | B1 | B1 | U2021 | 10D | F2 | B2 | | G2021 | 106 | | DZ | K1025 | TOA | ы | ы | UZUZZA | 100 | Γ2 | DZ | | C2022 | 10B | E2 | B2 | R1026 | 10A | A1 | B1 | U2022B | 10B | B1 | B2 | | C2023 | 10B | G4 | B2 | R1027 | 10B | C3 | B1 | U2022B | 10C | F2 | B2 | | C2024 | 10A | B1 | B2 | R1030 | 10B | D2 | C1 | U2022C | 10B | B2 | B2 | | C2025 | 10B | B3 | B2 | R1031 | 10B | D2 | C1 | U2023 | 10B | E3 | B2 | | C2026 | 10B | E4 | B2 | R2010 | 10A | B2 | A2 | U2024 | 10A | G1 | B2 | | C2027 | 10B | В3 | B2 | R2020 | 10B | F1 | B2 | U2025 | 10A | G2 | B2 | | C2028 | 10B | E4 | B2 | R2021 | 10A | В3 | B2 | U3020A | 10B | В3 | В3 | | C2030 | 10A | C1 | C2 | R2022 | 10A | C1 | B2 | U3020B | 10B | В3 | В3 | | C2031 | 10B | C3 | C2 | R2024A | 10B | A3 | B2 | U3020C | 10B | В3 | В3 | | C2032 | 10B | C4 | C2 | R2024B | 10B | A3 | B2 | U3020D | 10B | В3 | В3 | | C2033 | 10B | D3 | C2 | R2030 | 10B | D4 | C2 | U3021A | 10B | B1 | В3 | | C2034 | 10B | D4 | C2 | R2031 | 10B | E4 | C2 | U3021B | 10C | C2 | В3 | | C3010 | 10A | A4 | А3 | R2032 | 10B | D3 | C2 | U3021C | 10A | B2 | В3 | | C3020 | 10B | H4 | В3 | R2034 | 10B | В3 | C2 | U3021D | 10A | B2 | В3 | | C3021 | 10A | C1 | В3 | R2035 | 10B | В3 | C2 | U3022A | 10A | B3 | В3 | | C3022 | 10A | C1 | В3 | R2036 | 10B | C3 | C2 | U3022B | 10A | В3 | В3 | | C3023 | 10A | B1 | В3 | R2037 | 10B | C4 | C2 | U3022C | 10A | B2 | В3 | | C3030 † | 10B | D3 | C3 | R3010 | 10A | B4 | A3 | U3022D | 10A | В3 | В3 | | C3031 † | 10B | D3 | C3 | R3011 | 10A | В3 | А3 | U3023A | 10A | В4 | В3 | | C3032 | 10A | C3 | C3 | R3020A | 10B | D4 | В3 | U3023B | 10A | В3 | В3 | | C3033 | 10A | C3 | C3 | R3020B | 10B | D4 | В3 | U3023C | 10A | B4 | В3 | | C3034 | 10B | B4 | C3 | R3024 | 10A | D1 | В3 | U3023D | 10A | B4 | В3 | | | | | | R3031 | 10A | E1 | C3 | U3025 | 10A | G2 | В3 | | J1020 † | 10B | F1 | C1 | | | | | U3031 | 10A | G3 | C3 | | J3030 † | 10A | H1 | C3 | RT2038 | 10B | D3 | C2 | | | | | | PS2030 † | 10B | F2 | C2 | S1010 | 10A | A2 | A1 | | | | | | | | _ | | S1011 | 10A | A2 | A1 | | | | | | Q1020 | 10A | C1 | B1 | S2010 | 10A | A3 | A2 | | | | | | Q1030 | 10B | D3 | C1 | S2011 | 10A | A3 | A2 | | | | | | Q2020 | 10A | A1 | B2 | S3010 | 10A | A4 | A3 | | | | | | | | | | S3011 | 10A | D1 | A3 | | | | | | R1010 | 10A | B2 | A1 | _ | | _ | | | | | | | R1011 | 10B | D1 | A1 | S3012 | 10A | C2 | A3 | | | | | | R1012 | 10B | E2 | A1 | S3020 | 10A | E2 | B3 | | | | | | R1013 | 10A | B2 | A1 | S3021 | 10A | D3 | B3 | | | | | | R1018 | 10B | D1 | A1 | S3022 | 10A | C4 | B3 | | | | | | R1020 | 10B | D1 | B1 | S3023 | 10A | C3 | В3 | | | | | | | | | | | | | | | | | | [†] Back Side Components A3A1 - POWER SUPPLY | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOC <i>A</i>
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | ATION
BRD | |-------------------|---------------|---------------|--------------|-------------------|---------------|-----------------------|--------------|-------------------|---------------|---------------|--------------| | C1010 † | 1A | B2 | A1 | CR2010 | 1A | E3 | A2 | R1017 | 1A | D3 | A1 | | C1010
C1011 | 1A | B3 | A1 | CR2010
CR2011 | 1A
1A | G2 | A2
A2 | R1017 | 1A | C4 | A1 | | C1011 | 1A
1A | C4 | | | | G2
G2 | | | 1A
1A | | B1 | | | | | A1 | CR2012 | 1A | | A2 | R1020 | | B6 | Б1
В1 | | C1013 | 1A | F2 | A1 | CR2013 | 1A | G2 | A2 | R1021 | 1A | B5 | | | C1014 | 1A | D3 | A1 | CR2014 | 1A | G2 | A2 | R1022 | 1A | B7 | B1 | | C1015 | 1A | C4 | A1 | CR2015 | 1A | G2 | A2 | R1023 | 1A | B7 | B1 | | C1016 | 1A | C4 | A1 | CR2016 | 1A | A5 | A2 | R1024 | 1A | C7 | B1 | | C1030 | 1A | G5 | C1 | CR2020 | 1A | D7 | B2 | R1025 | 1A | C6 | B1 | | C1031 | 1A | G5 | C1 | CR2021 | 1A | D6 | B2 | R1026 | 1A | E7 | B1 | | C1032 | 1A | F4 | C1 | CR2030 | 1A | F6 | C2 | R1030 | 1A | G5 | C1 | | C1033 | 1A | F4 | C1 | CR2031 | 1A | F6 | C2 | R2010 | 1A | F2 | A2 | | C1034 | 1A | F3 | C1 | | | | | R2011 | 1A | F2 | A2 | | | | | | J1010 | 1A | B2 | A1 | | | | | | C1035 | 1A | F4 | C1 | J1030 | 1A | G4 | C1 | R2012 | 1A | G2 | A2 | | C1036 | 1A | G5 | C1 | J2010 | 1A | H2 | A2 | R2013 | 1A | A6 | A2 | | C1037 | 1A | G5 | C1 | | | | | R2014 | 1A | A6 | A2 | | C1038 | 1A | F6 | C1 | L1010 | 1A | E3 | A1 | R2015 | 1A | B6 | A2 | | C2010 | 1A | F3 | A2 | L2020 | 1A | D6 | B2 | R2016 | 1A | A5 | A2 | | C2011 | 1A | A5 | A2 | | | | | R2017 | 1A | A5 | A2 | | | | | | Q1010 | 1A | E2 | A1 | | | | | | C2012 | 1A | F3 | A2 | Q1011 | 1A | F2 | A1 | R2018 | 1A | B5 | A2 | | C2013 | 1A | B6 | A2 | Q1012 | 1A | E2 | A1 | R2020 | 1A | C7 | B2 | | C2020 | 1A | C7 | B2 | Q2010 | 1A | B6 | A2 | R2021 | 1A | D7 | B2 | | C2021 | 1A | D5 | B2 | Q2011 | 1A | B5 | A2 | R2022 | 1A | D7 | B2 | | C2022 | 1A | C7 | B2 | Q2012 | 1A | B5 | A2 | R2023 | 1A | D7 | B2 | | C2023 | 1A | C7 | B2 | ~ | | | <u>-</u> | R2024 | 1A | C7 | B2 | | | | | | Q2020 | 1A | D7 | B2 | | | | | | C2024 | 1A | E7 | B2 | Q2021 | 1A | D8 | B2 | R2025 | 1A | D7 | B2 | | C2025 | 1A | E6 | B2 | Q2022 | 1A | D7 | B2 | R2026 | 1A | D8 | B2 | | C2030 | 1A | E8 | C2 | Q2030 | 1A | F6 | C2 | R2027 | 1A | D7 | B2 | | C2031 | 1A | G6 | C2 | Q2031 | 1A | F6 | C2 | R2030 | 1A | G6 | C2 | | 02001 | 17.1 | 00 | 02 | QZ001 | 171 | 10 | 02 | R2031 | 1A | G4 | C2 | | CR1010 | 1A | B2 | A1 | R1010 | 1A | В3 | A1 | R2032 | 1A | G7 | C2 | | CR1010 | 1A | E3 | A1 | R1010 | 1A | B3 | A1 | 112002 | IΛ | 31 | 02 | | CR1011 | 1A
1A | F4 | C1 | R1011 | 1A
1A | В3 | A1 | S2010 | 1A | A5 | A2 | | CR1030
CR1031 | 1A | F5 | C1 | R1012 | 1A
1A | C3 | A1 | 32010 | IA | AU | AZ | | CR1031
CR1032 | 1A
1A | F5
F5 | C1 | R1013 | 1A
1A | D2 | A1 | T1030 | 1A | F5 | C1 | | | | F5
F5 | | | | | | T1030 | | | C1 | | CR1033 | 1A | ГЭ | C1 | R1015 | 1A | В3 | A1 | 11031 | 1A | G6 | UT | | CR1034 | 1A | F3 | C1 | R1016 | 1A | В3 | A1 | TP1010 | 1A | А3 | A1 | [†] Back Side Components # A3A1 - POWER SUPPLY | CIRCUIT | SCHEM | LOCA | TION | |---------|-------|-------|------| | NUMBER | PAGE | SCHEM | BRD | | TP1020 | 1A | G2 | B1 | | TP2010 | 1A | B2 | A2 | | TP2030 | 1A | E6 | C2 | | U1010 | 1A | C4 | A1 | | U1011 | 1A | D3 | A1 | | U1020A | 1A | В6 | B1 | | U1020B | 1A | В6 | B1 | | U1021A | 1A | B7 | B1 | | U1021B | 1A | B8 | B1 | | U1022 | 1A | C6 | B1 | | U1023 | 1A | C7 | B1 | | U1024B | 1A | E7 | B1 | | U2010 | 1A | G2 | A2 | | U2030A | 1A | E8 | C2 | | U2030B | 1A | F7 | C2 | | U2030C | 1A | F7 | C2 | | U2030D | 1A | F7 | C2 | | U2030E | 1A | F7 | C2 | | VR1012 | 1A | D2 | A1 | ## A4 – L/R PULSER SAMPLER | CIRCUIT | SCHEM | LOCA | ATION | CIRCUIT | SCHEM | LOCA | TION | CIRCUIT | SCHEM | LOCA | TION | |---------|-------|----------|------------|---------|-------|-------|------|----------------|-------|-------|------| | NUMBER | PAGE | SCHEM | BRD | NUMBER | PAGE | SCHEM | BRD | NUMBER | PAGE | SCHEM | BRD | | C1040 | 4B | C7 | D1 | C3021 | 4B | H4 | B3 | L1040 | 4B | C7 | D1 | | C1060 | 4A | A2 | F1 | C3030 | 4B | E2 | C3 | L2040 | 4B | C6 | D2 | | C1061 | 4A | B4 | F1 | C3031 | 4B | E2 | C3 | L2041 | 4B | C5 | D2 | | C1062 | 4A | B4 | F1 | C3032 | 4B | E2 | C3 | LZOTI | 70 | 00 | DZ | | C1062 | 4B | B3 | F1 | C3032 | 4B | A6 | C3 | Q1010 | 4B | F7 | A1 | | C1063 | 4A | E3 | F1 | C3033 | 4B | A6 | C3 | Q1010
Q1020 | 4B | G4 | B1 | | C1004 | 4/4 | E3 | ГІ | U3034 | 4D | Ab | CS | | | F4 | | | C400F | 4.0 | ۸.0 | - 4 | 02040 | 40 | D7 | Da | Q1021 | 4B | | B1 | | C1065 | 4A | A2 | F1 | C3040 | 4B | D7 | D3 | Q1022 | 4B | F5 | B1 | | C1066 | 4A | A4 | F1 | C3050 | 4B | B2 | E3 | Q1030 | 4B | F7 | C1 | | C1070 | 4A | E4 | G1 | C3051 | 4B | B1 | E3 | Q1031 |
4B | F6 | C1 | | C1080 | 4A | A3 | H1 | C3052 | 4A | A6 | E3 | | | | | | C1081 | 4A | B5 | H1 | C3060 | 4A | D3 | F3 | Q1060 | 4B | A4 | F1 | | C1082 | 4A | H4 | H1 | C3061 | 4A | C4 | F3 | Q2010 | 4B | G2 | A2 | | | | | | | | | | Q2011 | 4B | F2 | A2 | | C1083 | 4A | E5 | H1 | C3062 | 4A | C4 | F3 | Q2012 | 4B | F2 | A2 | | C1084 | 4A | E4 | H1 | C3063 | 4A | B6 | F3 | Q2030 | 4B | D7 | C2 | | C1085 | 4A | F4 | H1 | C3064 | 4A | B2 | F3 | Q2031 | 4B | D6 | C2 | | C1090 | 4A | H3 | 11 | C3065 | 4A | B6 | F3 | | | | | | C1091 | 4A | H4 | I 1 | C3070 | 4A | D6 | G3 | Q2032 | 4B | D5 | C2 | | C2013 | 4B | G2 | A2 | C3071 | 4A | B5 | G3 | Q2033 | 4B | D3 | C2 | | | | | | | | | | Q2034 | 4B | D2 | C2 | | C2014 | 4B | F2 | A2 | C3072 | 4A | D5 | G3 | Q2040 | 4B | C3 | D2 | | C2015 | 4B | F2 | A2 | C3080 | 4A | D6 | H3 | Q2050 | 4B | В6 | E2 | | C2020 | 4B | E4 | B2 | C3081 | 4A | D6 | Н3 | Q2051 | 4B | C5 | E2 | | C2021 | 4B | G4 | B2 | C3082 | 4A | F6 | H3 | α_σσ. | | | | | C2022 | 4B | F4 | B2 | 00002 | | | | Q2052 | 4B | C5 | E2 | | C2023 | 4B | F4 | B2 | CR1010 | 4B | G7 | A1 | Q2053 | 4B | B2 | E2 | | 02020 | | | 52 | CR1030 | 4B | G6 | C1 | Q2060 | 4A | D3 | F2 | | C2030 | 4B | D3 | C2 | CR1031 | 4B | F5 | C1 | Q3020 | 4B | E3 | B3 | | C2040 | 4B | C3 | D2 | CR2050 | 4B | B2 | E2 | Q3021 | 4B | E3 | B3 | | C2040 | 4B | C6 | D2 | CR2060 | 4A | D2 | F2 | Q3021 | 4B | D2 | C3 | | C2041 | 4B | C5 | D2 | CR2061 | 4A | D3 | F2 | Q3033 | 40 | DZ | 03 | | C2042 | 4B | C2 | D2 | CINZUUT | 4/1 | DJ | 1 2 | Q3050 | 4A | В6 | E3 | | | | C2
C4 | E2 | CBanea | 4.6 | Da | Ea | | | | F3 | | C2050 | 4B | 04 | ĽZ | CR2062 | 4A | D3 | F2 | Q3060 | 4A | C3 | | | C2051 | ΔD | CF | Eo | CR2063 | 4A | C4 | F2 | Q3061 | 4A | C4 | F3 | | C2051 | 4B | C5 | E2 | CR3020 | 4B | H2 | B3 | Q3062 | 4A | C4 | F3 | | C2060 | 4A | C4 | F2 | CR3021 | 4B | H2 | B3 | Q3070 | 4A | C6 | G3 | | C2070 | 4A | E5 | G2 | CR3040 | 4B | C3 | D3 | Q3080 | 4A | D6 | НЗ | | C2071 | 4A | C5 | G2 | CR3070 | 4A | В6 | G3 | D4646 | 45 | 0- | | | C2072 | 4A | D5 | G2 | 0.0000 | | | | R1010 | 4B | G7 | A1 | | C2073 | 4A | D7 | G2 | CR3090 | 4A | F6 | 13 | R1011 | 4B | F7 | A1 | | | _ | _ | | CR3091 | 4A | G6 | 13 | R1012 | 4B | F8 | A1 | | C2080 | 4A | E5 | H2 | CR3092 | 4A | G6 | 13 | R1013 | 4B | E4 | A1 | | C2081 | 4A | F6 | H2 | CR3093 | 4A | G6 | I3 | R1022 | 4B | F4 | B1 | | C2090 | 4A | F6 | 12 | | | | | R1023 | 4B | F4 | B1 | | C3010 | 4B | H3 | А3 | J3010 | 4B | Н3 | А3 | | | | | | C3011 | 4B | H3 | А3 | J3040 | 4A | B7 | D3 | R1030 | 4B | G4 | C1 | | C3020 | 4B | E3 | B3 | | | | | R1031 | 4B | G7 | C1 | | | | | | | | | | | | | | # A4 – L/R PULSER SAMPLER | CIRCUIT
NUMBER | SCHEM
PAGE | LOC <i>A</i>
SCHEM | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | | ATION
BRD | CIRCUIT
NUMBER | SCHEM
PAGE | LOCA
SCHEM | ATION
BRD | |-------------------|---------------|-----------------------|--------------|-------------------|---------------|-----|--------------|-------------------|---------------|---------------|--------------| | R1032 | 4B | F7 | C1 | R2051 | 4B | C2 | E2 | R3031 | 4B | E2 | C3 | | R1033 | 4B | E6 | C1 | R2052 | 4B | C5 | E2 | R3032 | 4B | G4 | C3 | | R1034 | 4B | F6 | C1 | R2053 | 4B | В3 | E2 | R3033 | 4B | D1 | C3 | | R1035 | 4B | F6 | C1 | R2054 | 4B | B1 | E2 | R3034 | 4B | D2 | C3 | | R1036 | 4B | E5 | C1 | R2055 | 4B | B5 | E2 | R3035 | 4B | C1 | C3 | | R1037 | 4B | D6 | C1 | R2060 | 4A | D4 | F2 | R3036 | 4B | C2 | C3 | | 1007 | 70 | Во | 01 | 112000 | 77.1 | DŦ | 12 | 110000 | 40 | OZ | 00 | | R1038 | 4B | D7 | C1 | R2061 | 4A | D4 | F2 | R3040 | 4B | D3 | D3 | | R1050 | 4B | B7 | E1 | R2062 | 4A | C2 | F2 | R3041 | 4B | D7 | D3 | | R1051 | 4B | B7 | E1 | R2063 | 4A | C4 | F2 | R3042 | 4B | D7 | D3 | | R1052 | 4B | B7 | E1 | R2064 | 4A | D3 | F2 | R3043 | 4B | A6 | D3 | | R1053 | 4B | B5 | E1 | R2065 | 4A | C4 | F2 | R3044 | 4B | C4 | D3 | | R1054 | 4B | B6 | E1 | R2066 | 4A | D4 | F2 | R3045 | 4B | A2 | D3 | | K1054 | 4D | БО | E1 | K2000 | 4A | D4 | ΓΖ | K3045 | 4D | AZ | DS | | R1060 | 4B | A5 | F1 | R2067 | 4A | C5 | F2 | R3046 | 4B | B2 | D3 | | R1061 | 4B | A3 | F1 | R2070 | 4A | D4 | G2 | R3050 | 4A | B7 | E3 | | R1062 | 4B | A3 | F1 | R2071 | 4A | E5 | G2 | R3051 | 4A | B6 | E3 | | R1063 | 4B | A4 | F1 | R2072 | 4A | E3 | G2 | R3052 | 4A | A6 | E3 | | R1064 | 4A | A3 | F1 | R2073 | 4A | E5 | G2 | R3060 | 4A | C3 | F3 | | R1065 | 4A | A2 | F1 | R2074 | 4A | E4 | G2 | R3061 | 4A | C3 | F3 | | | | | | | | | | | | | | | R1066 | 4A | D2 | F1 | R2075 | 4A | D7 | G2 | R3062 | 4A | B6 | F3 | | R1070 | 4A | A4 | G1 | R2076 | 4A | D6 | G2 | R3063 | 4A | C4 | F3 | | R1071 | 4A | B4 | G1 | R2080 | 4A | F4 | H2 | R3064 | 4A | B6 | F3 | | R1072 | 4A | B4 | G1 | R2081 | 4A | F4 | H2 | R3070 | 4A | C6 | G3 | | R1073 | 4A | B4 | G1 | R2082 | 4A | G4 | H2 | R3071 | 4A | C6 | G3 | | R1074 | 4A | A2 | G1 | R2083 | 4A | F5 | H2 | R3072 | 4A | C6 | G3 | | | ., . | , | 0. | 112000 | ., , | . 0 | | 110072 | ., , | 00 | | | R1080 | 4A | E4 | H1 | R2090 | 4A | G5 | 12 | R3073 | 4A | B6 | G3 | | R1090 | 4A | H4 | I 1 | R2091 | 4A | G4 | 12 | R3074 | 4A | C2 | G3 | | R1091 | 4A | H3 | I 1 | R2092 | 4A | G3 | 12 | R3075 | 4A | D5 | G3 | | R2010 | 4B | F2 | A2 | R2093 | 4A | H3 | 12 | R3076 | 4A | D5 | G3 | | R2011 | 4B | F2 | A2 | R2094 | 4A | G5 | 12 | R3077 | 4A | B5 | G3 | | R2012 | 4B | G2 | A2 | R2095 | 4A | G4 | 12 | R3080 | 4A | E6 | Н3 | | | | | | | | | | | | | | | R2020 | 4B | E4 | B2 | R2096 | 4A | H5 | 12 | R3081 | 4A | E6 | H3 | | R2021 | 4B | G3 | B2 | R2097 | 4A | G5 | 12 | R3082 | 4A | E6 | H3 | | R2022 | 4B | F3 | B2 | R2098 | 4A | F6 | 12 | R3083 | 4A | E6 | НЗ | | R2023 | 4B | F4 | B2 | R3010 | 4B | G3 | A3 | R3090 | 4A | F7 | 13 | | R2030 | 4B | E3 | C2 | R3011 | 4B | F3 | A3 | R3091 | 4A | F6 | 13 | | R2031 | 4B | D2 | C2 | R3012 | 4B | F3 | A3 | R3092 | 4A | F5 | 13 | | 112001 | ţD. | 52 | 52 | 1.0012 | †D | . 0 | , 10 | 110002 | 7/ \ | . 0 | .0 | | R2040 | 4B | D7 | D2 | R3020 | 4B | E3 | В3 | R3093 | 4A | G6 | 13 | | R2041 | 4B | D6 | D2 | R3021 | 4B | E3 | В3 | R3094 | 4A | G6 | 13 | | R2042 | 4B | D5 | D2 | R3022 | 4B | H2 | В3 | | | | | | R2043 | 4B | C4 | D2 | R3023 | 4B | H2 | В3 | T3070 | 4A | D6 | G3 | | R2044 | 4B | C5 | D2 | R3024 | 4B | G3 | В3 | T3080 | 4A | E6 | H3 | | R2050 | 4B | B6 | E2 | R3030 | 4B | E1 | C3 | T3081 | 4A | E6 | H3 | | 1.2000 | ,,, | 20 | | 1.0000 | ,,, | | 50 | .0001 | 17.1 | _0 | . 10 | ## A4 – L/R PULSER SAMPLER | CIRCUIT | SCHEM | LOCA | TION | |---|----------------------------|----------------------------------|----------------------------------| | NUMBER | PAGE | SCHEM | BRD | | TP1060 | 4A | D2 | F1 | | TP1080 | 4A | B3 | H1 | | TP1081 | 4A | B3 | H1 | | TP1082 | 4A | B5 | H1 | | TP2030 | 4B | D5 | C2 | | TP3020 | 4B | H3 | B3 | | TP3030 | 4B | H3 | C3 | | TP3040 | 4B | A2 | D3 | | TP3050 | 4A | A6 | E3 | | TP3051 | 4A | G2 | E3 | | U1040A | 4B | E5 | D1 | | U1040B | 4B | E6 | D1 | | U1040C | 4B | E7 | D1 | | U1040D | 4B | E7 | D1 | | U1050 | 4B | A7 | E1 | | U1070A | 4A | B3 | G1 | | U1070B
U1080
U1090A
U1090B
U2070A
U2070B | 4A
4A
4A
4A
4A | B5
A3
H3
H5
E4
E3 | G1
H1
I1
I1
G2
G2 | | U2080 | 4A | E4 | H2 | | VR2080 | 4A | D7 | H2 | | VR3020 | 4B | H2 | B3 | | VR3021 | 4B | H2 | B3 | | VR3080 | 4A | D5 | H3 | # A6 - ETHERNET - OPTION 06 | CIRCUIT | SCHEM | LOCA | TION | CIRCUIT | SCHEM | LOCA | ATION | |---------|-------|-------|------|---------|-------|-------|-------| | NUMBER | PAGE | SCHEM | BRD | NUMBER | PAGE | SCHEM | BRD | | C1010 | 13 | G2 | A1 | R2021 | 13 | D3 | B2 | | C1020 | 13 | E2 | B1 | R2022 | 13 | D3 | B2 | | C1021 | 13 | E1 | B1 | R2023 | 13 | F4 | B2 | | C2020 | 13 | G4 | B2 | R2024 | 13 | E3 | B2 | | C2030 | 13 | D4 | C2 | R2025 | 13 | D3 | B2 | | C2031 | 13 | D3 | C2 | R2026 | 13 | C4 | B2 | | C2032 | 13 | E3 | C2 | R2027 | 13 | D3 | B2 | | C2033 | 13 | E4 | C2 | R2030 | 13 | D4 | C2 | | C2034 | 13 | C4 | C2 | R2031 | 13 | C2 | C2 | | C2035 | 13 | C3 | C2 | R2032 | 13 | E4 | C2 | | | | | | R2033 | 13 | E3 | C2 | | CR2020 | 13 | D3 | B2 | R2034 | 13 | B4 | C2 | | CR2021 | 13 | D3 | B2 | | | | | | CR2022 | 13 | F3 | B2 | U1030A | 13 | E4 | C1 | | CR2023 | 13 | G3 | B2 | U1030B | 13 | E2 | C1 | | CR2024 | 13 | C2 | B2 | U1031 | 13 | C1 | C1 | | CR2025 | 13 | B2 | B2 | U2030 | 13 | B3 | C2 | | | | | | | | | | | J2030 | 13 | B2 | C2 | VR2020 | 13 | D3 | B2 | | | | _ | | VR2021 | 13 | E4 | B2 | | K1020 | 13 | G2 | B1 | VR2030 | 13 | B4 | C2 | | L2010 | 13 | H2 | A2 | | | | | | Q1020 | 13 | F2 | B1 | | | | | | Q1021 | 13 | F2 | B1 | | | | | | Q2020 | 13 | F4 | B2 | | | | | | R1010 | 13 | G2 | A1 | | | | | | R1011 | 13 | G2 | A1 | | | | | | R1012 | 13 | G2 | A1 | | | | | | R1013 | 13 | G1 | A1 | | | | | | R1020 | 13 | F2 | B1 | | | | | | R1030 | 13 | F1 | C1 | | | | | | R1031 | 13 | E1 | C1 | | | | | | R1032 | 13 | E2 | C1 | | | | | | R1033 | 13 | E2 | C1 | | | | | | R1034 | 13 | E3 | C1 | | | | | | R1035 | 13 | D2 | C1 | | | | | | R1036 | 13 | D2 | C1 | | | | | | R1037 | 13 | D2 | C1 | | | | | | R2020 | 13 | G2 | B2 | | | | | | 112020 | 13 | GZ | DZ | | | | | Fig. 9-2. Component Locator - Main Board D Ε C1040 0.22uF Α C1041 〒 Ø.22∪F В C5@5@ Ø .22uF С $\sqrt{3}$ Н MAIN ADDRESS DECODE ASSY 670-9285-05 A1 REV 14-Dec-94 G ≨ 12.1K D † ø.22uF Ε **〒** Ø.22uF F ₹R3Ø2Ø 12.1K +12V 10-BIT D/A С QUAD D Α FLIP-FLOP В (8A) Н MAIN ANALOG TIMEBASE ASSY 670-9285-05 A1 REV 14-Dec-94 G Fig. 9-3. Component Locator - Front Panel Board Ε 2 6 BCD DECODED ROT SWITCH С 13 D ₹R3010 ₹100k U3023D 74HCØ2 12 В √ 13 C3Ø1Ø Ø .22uF ADC_RD REVE .4 DUAL MUX G SWITCHES Fig. 9-4. Component Locator - Power Supply Board Fig. 9-5. Component Locator - L/R Pulser Sampler # **Replaceable Mechanical Parts** This section contains a list of the replaceable mechanical components for the 1503C. Use this list to identify and order replacement parts. # **Parts Ordering
Information** Replacement parts are available through your local Tektronix field office or representative. Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available and to give you the benefit of the latest circuit improvements. Therefore, when ordering parts, it is important to include the following information in your order. - Part number - Instrument type or model number - Instrument serial number - Instrument modification number, if applicable If you order a part that has been replaced with a different or improved part, your local Tektronix field office or representative will contact you concerning any change in part number. Change information, if any, is located at the rear of this manual. # **Using the Replaceable Mechanical Parts List** The tabular information in the Replaceable Mechanical Parts List is arranged for quick retrieval. Understanding the structure and features of the list will help you find all of the information you need for ordering replacement parts. The following table describes the content of each column in the parts list. #### **Parts List Column Descriptions** | Column | Column Name | Description | |---------|-----------------------|--| | 1 | Figure & Index Number | Items in this section are referenced by figure and index numbers to the exploded view illustrations that follow. | | 2 | Tektronix Part Number | Use this part number when ordering replacement parts from Tektronix. | | 3 and 4 | Serial Number | Column three indicates the serial number at which the part was first effective. Column four indicates the serial number at which the part was discontinued. No entries indicates the part is good for all serial numbers. | | 5 | Qty | This indicates the quantity of parts used. | | 6 | Name & Description | An item name is separated from the description by a colon (:). Because of space limitations, an item name may sometimes appear as incomplete. Use the U.S. Federal Catalog handbook H6-1 for further item name identification. | | 7 | Mfr. Code | This indicates the code of the actual manufacturer of the part. | | 8 | Mfr. Part Number | This indicates the actual manufacturer's or vendor's part number. | **Abbreviations** Abbreviations conform to American National Standard ANSI Y1.1–1972. **Chassis Parts** Chassis-mounted parts and cable assemblies are located at the end of the Replaceable Electrical Parts List. Mfr. Code to Manufacturer Cross Index The table titled Manufacturers Cross Index shows codes, names, and addresses of manufacturers or vendors of components listed in the parts list. ## **Manufacturers Cross Index** | ### WESTERN SINTERING CO INC | Mfr.
Code | Manufacturer | Address | City, State, Zip Code | |--|--------------|----------------------------------|--------------------------------|-----------------------------| | WACHTEL CO INC THE | TK0588 | UNIVERSAL PRECISION PRODUCTS | 1775 NW 216TH | HILLSBORO, OR 97123 | | 943 NEILSEN MANUFACTURING INC 3501 PORTLAND ROAD NE SALEM, OR 97303 3244 RMS COMPANY 7645 BAKER ST NE MINNEAPOOLIS, MN 55432–3421 9555 ORNELAS INTERPRISES INC 7275 NW EVERGREEN PKWY #100 HILLSBORD, OR 97124 1642 ROSS OPTICAL INDUSTRIES INC 1410 GAIL BORDEN PLACE EL PASO, TX 79935 2233 AMERICAN SLIDE CHART CORPORATION 14827 NEEDLES ST. SEPULVEDBA, CA 91343 1548 XEROX CORPORATION 14181 SW MILLIKAN WAY BEAVERTON, OR 97005 1582 TUFF GAT USA LLC 814 N HAYDEN MEADOWS DRIVE PORTLAND, OR 97217 1699 ARROWIRICHEY ELECTRONICS ARROWIRICHEY VALUE ADDED BEAVERTON, OR 97005 3671 SW MINNERY BLVD BEAVERTON, OR 97005 3672 VOLEX INTERCONNECT INC POWER CORP PRODUCTS SSS LAKEVIEW PARKWAY INDIANAPOLIS, IN 46268 3672 VOLEX INTERCONNECT INC POBUR CORP PRODUCTS SSS LAKEVIEW PARKWAY INDIANAPOLIS, IN 46268 3601 SYM MERY BLVD INDIANAPOLIS, IN 46268 SSS LAKEVIEW PARKWAY SOLETA SCHOLING 361 SYM MINESOTA MINUF OF OREGON PO BOX | TK0914 | WESTERN SINTERING CO INC | 2620 STEVENS DRIVE | RICHLAND, WA 99352 | | RMS COMPANY 7645 BAKER ST NE | TK1423 | WACHTEL CO INC THE | 1100-B L AVENIDA ST | MOUNTAIN VIEW, CA 94043 | | Sepant S | ΓK1943 | NEILSEN MANUFACTURING INC | 3501 PORTLAND ROAD NE | SALEM, OR 97303 | | 8624 ROSS OPTICAL INDUSTRIES INC 1410 GAIL BORDEN PLACE EL PASO, TX 79935 8233 AMERICAN SLIDE CHART CORPORATION 14827 NEEDLES ST. SEPULVEDA, CA 91343 8548 XEROX CORPORATION 14781 SW MILLIKAN WAY BEAVERTON, OR 97005 1559 TUFF CAT USA LLC 814 N HAYDEN MEADOWS DRIVE PORTLAND, OR 97217 1519 ARROWIRICHEY ELECTRONICS ARROWIRICHEY VALUE ADDED BEAVERTON, OR 97005 3601 SW MURRY BLVD BEAVERTON, OR 97005 S601 SW MURRY BLVD 3372 VOLEX INTERCONNECT INC POWER CORD PRODUCTS
5330 LAXEVIEW PARKWAY
SOUTH DRIVES, SUITE D INDIANAPOLIS, IN 46268 60 COMTEK MANUF OF OREGON PO BOX 4200 BEAVERTON, OR 97006 C1 TVT DIECASTING AND MFG INC 7330 SW LANDMARK LANE PORTLAND, OR 97223 WW6 MICRO PWER ELECTRONICS 7973 SW CIRRUS DRIVE, BLDG. #22 BEAVERTON, OR 97005 Z2 PRECISION PRINTERS 165 SPRINGHILL DRIVE GRAND VALLEY, CA 95945 N9 MCX INC 30608 SAN ANTONIO ST HAYWARD, CA 94544 P44 DELTA ENGINEERING 19500 SW TETON TULLATIN, OR 97062 | K2324 | RMS COMPANY | 7645 BAKER ST NE | MINNEAPOOLIS, MN 55432-3421 | | 2233 AMERICAN SLIDE CHART CORPORATION 14827 NEEDLES ST. SEPULLEDA, CA 91343 2548 XEROX CORPORATION 14181 SW MILLIKAN WAY BEAVERTON, OR 97005 2582 TUFF CAT USA LLC 814 N HAYDEN MEADOWS DRIVE PORTLAND, OR 97217 1519 ARROWRICHEY ELECTRONICS ARROWRICHEY VALUE ADDED 3601 SW MURRY BLVD BEAVERTON, OR 97005 3672 VOLEX INTERCONNECT INC POWER CORD PRODUCTS 5350 LAKEWIEW PARKWAY SOUTH DRIVE. SUITE D INDIANAPOLIS, IN 46268 560 COMTEK MANUF OF OREGON PO BOX 4200 BEAVERTON, OR 97076-4200 C1 TVT DIECASTING AND MFG INC 7330 SW LANDMARK LANE PORTLAND, OR 970223 C20 PRECISION PRINTERS 165 SPRINGHILL DRIVE GRAND VALLEY, CA 95945 N9 MCX INC 30608 SAN ANTONIO ST HAYWARD, CA 94544 NP4 DELTA ENGINEERING 19500 SW TETON TUALATIN, OR 97062 205 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661-2999 215 GASKET TECHNOLOGY 478 NE 219TH AVENUE TROUTDALE, OR 97060 216 SON CETT HILLSBORO, OR 97124-6474 279 | K2545 | ORNELAS INTERPRISES INC | 7275 NW EVERGREEN PKWY #100 | HILLSBORO, OR 97124 | | 2548 XEROX CORPORATION | K2624 | ROSS OPTICAL INDUSTRIES INC | 1410 GAIL BORDEN PLACE | EL PASO, TX 79935 | | TUFF CAT USA LLC | TK2233 | AMERICAN SLIDE CHART CORPORATION | 14827 NEEDLES ST. | SEPULVEDA, CA 91343 | | ARROW/RICHEY ELECTRONICS ARROW/RICHEY VALUE ADDED 3601 SW MURRY BLVD SUITE 60 COMTEK MANUF OF OREGON PO BOX 4200 BEAVERTON, OR 97076–4200 COMTEK MANUF OF OREGON PO BOX 4200 BEAVERTON, OR 97076–4200 COMTEK MANUF OF OREGON PO BOX 4200 BEAVERTON, OR 97076–4200 COMTEK MANUF OF OREGON PO BOX 4200 BEAVERTON, OR 97076–4200 COMTEK MANUF OF OREGON PO BOX 4200 BEAVERTON, OR 97076–4200 | K2548 | XEROX CORPORATION | 14181 SW MILLIKAN WAY | BEAVERTON, OR 97005 | | 3601 SW MURRY BLVD SUITE 60 COMTEK MANUF OF OREGON PO BOX 4200 BEAVERTON, OR 97076–4200 CT TVT DIECASTING AND MFG INC DIECAST | K2582 | TUFF CAT USA LLC | 814 N HAYDEN MEADOWS DRIVE | PORTLAND, OR 97217 | | \$350 LAKEVIEW PARKWAY \$OUTH DRIVE, SUITE D 60 COMTEK MANUF OF OREGON PO BOX 4200 BEAVERTON, OR 97076–4200 C1 TYT DIECASTING AND MFG INC 7330 SW LANDMARK LANE PORTLAND, OR 97023 WW6 MICRO PWER ELECTRONICS 7973 SW CIRRUS DRIVE, BLDG. #22 BEAVERTON, OR 97005 Z2 PRECISION PRINTERS 165 SPRINGHILL DRIVE GRAND VALLEY, CA 95945 N9 MCX INC 30608 SAN ANTONIO ST HAYWARD, CA 94544 P4 DELTA ENGINEERING 19500 SW TETON TUALATIN, OR 97062 D5 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661–2999 Z25 GASKET TECHNOLOGY 478 NE 219TH AVENUE TROUTDALE, OR 97060 S301 STAUFFER SUPPLY 810 SE SHERMAN PORTLAND, OR 97214 R05 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124–6474 R079 AMP INC 2800 FULLING MILL PO
BOX 3608 HARRISBURG, PA 17105 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646–6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101–1428 R04 3–D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249–2126 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 R05 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769–2963 R074 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010–7438 R094 AIR-OIL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6529 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6529 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 | K6159 | ARROW/RICHEY ELECTRONICS | 3601 SW MURRY BLVD | BEAVERTON, OR 97005 | | CT TVT DIECASTING AND MFG INC 7330 SW LANDMARK LANE PORTLAND, OR 97223 WW6 MICRO PWER ELECTRONICS 7973 SW CIRRUS DRIVE, BLDG. #22 BEAVERTON, OR 97005 ZZ2 PRECISION PRINTERS 165 SPRINGHILL DRIVE GRAND VALLEY, CA 95945 N9 MCX INC 30608 SAN ANTONIO ST HAYWARD, CA 94544 PVP4 DELTA ENGINEERING 19500 SW TETON TUALATIN, OR 97062 205 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661-2999 205 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661-2999 205 TRIQUEST CORP 478 NE 219TH AVENUE TROUTDALE, OR 97060 301 STAUFFER SUPPLY 810 SE SHERMAN PORTLAND, OR 97214 305 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124-6474 405 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HARRISBURG, PA 17105 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646-6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO | K6372 | VOLEX INTERCONNECT INC | 5350 LAKEVIEW PARKWAY | INDIANAPOLIS, IN 46268 | | WW6 MICRO PWER ELECTRONICS 7973 SW CIRRUS DRIVE, BLDG. #22 BEAVERTON, OR 97005 Z22 PRECISION PRINTERS 165 SPRINGHILL DRIVE GRAND VALLEY, CA 95945 N9 MCX INC 30608 SAN ANTONIO ST HAYWARD, CA 94544 PP4 DELTA ENGINEERING 19500 SW TETON TUALATIN, OR 97062 105 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661-2999 125 GASKET TECHNOLOGY 478 NE 219TH AVENUE TROUTDALE, OR 97060 301 STAUFFER SUPPLY 810 SE SHERMAN PORTLAND, OR 97214 105 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124-6474 14 AMP INC 2800 FULLING MILL PO BOX 3608 HARRISBURG, PA 17105 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646-6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101-1428 642 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97214-3556 643 MCGUIRE BEARING CO 947 SE MARKET ST | J260 | COMTEK MANUF OF OREGON | PO BOX 4200 | BEAVERTON ,OR 97076-4200 | | ZZ2 PRECISION PRINTERS 165 SPRINGHILL DRIVE GRAND VALLEY, CA 95945 N9 MCX INC 30608 SAN ANTONIO ST HAYWARD, CA 94544 VP4 DELTA ENGINEERING 19500 SW TETON TUALATIN, OR 97062 VD5 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661–2999 VZ5 GASKET TECHNOLOGY 478 NE 219TH AVENUE TROUTDALE, OR 97060 S01 STAUFFER SUPPLY 810 SE SHERMAN PORTLAND, OR 97214 805 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124–6474 79 AMP INC 2800 FULLING MILL PO BOX 3608 HARRISBURG, PA 17105 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646–6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101–1428 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249–2126 462 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97214–3556 87 MINNESOTA MINING MFG CO 947 SE MARKET ST <t< td=""><td>J4C1</td><td>TVT DIECASTING AND MFG INC</td><td>7330 SW LANDMARK LANE</td><td>PORTLAND, OR 97223</td></t<> | J4C1 | TVT DIECASTING AND MFG INC | 7330 SW LANDMARK LANE | PORTLAND, OR 97223 | | NP MCX INC 30608 SAN ANTONIO ST HAYWARD, CA 94544 4P4 DELTA ENGINEERING 19500 SW TETON TUALATIN, OR 97062 4D5 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661-2999 4D5 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661-2999 4D5 TRIQUEST CORP 478 NE 219TH AVENUE TROUTDALE, OR 97060 4D6 STAUFFER SUPPLY 810 SE SHERMAN PORTLAND, OR 97214 4D6 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124-6474 4D7 AMP INC 2800 FULLING MILL PO BOX 3608 HARRISBURG, PA 17105 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646-6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101-1428 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249-2126 36 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97214-3556 37 MINNESOTA MINING MFG CO 947 SE MARKET ST P | DWW6 | MICRO PWER ELECTRONICS | 7973 SW CIRRUS DRIVE,BLDG. #22 | BEAVERTON, OR 97005 | | DELTA ENGINEERING 19500 SW TETON TUALATIN, OR 97062 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661–2999 TROUTDALE, OR 97060 GASKET TECHNOLOGY 478 NE 219TH AVENUE TROUTDALE, OR 97060 STAUFFER SUPPLY 810 SE SHERMAN PORTLAND, OR 97214 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124–6474 AMP INC 2800 FULLING MILL PO BOX 3608 HARRISBURG, PA 17105 IS RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646–6013 EBERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 ST PAUL, MN 55101–1428 JA 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249–2126 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97214–3556 MINNESOTA MINING MFG CO 947 SE MARKET ST PORTLAND, OR 97214–3556 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769–2963 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769–2963 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010–7438 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214–1752 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952–1152 | J4Z2 | PRECISION PRINTERS | 165 SPRINGHILL DRIVE | GRAND VALLEY, CA 95945 | | 05 TRIQUEST CORP 3000 LEWIS AND CLARK HWY VANCOUVER, WA 98661-2999 05 GASKET TECHNOLOGY 478 NE 219TH AVENUE TROUTDALE, OR 97060 301 STAUFFER SUPPLY 810 SE SHERMAN PORTLAND, OR 97214 305 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124-6474 79 AMP INC 2800 FULLING MILL PO BOX 3608 HARRISBURG, PA 17105 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646-6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101-1428 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249-2126 662 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 113 MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214-3556 87 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769-2963 74 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010-7438 194 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE | J7N9 | MCX INC | 30608 SAN ANTONIO ST | HAYWARD, CA 94544 | | 225 GASKET TECHNOLOGY 478 NE 219TH AVENUE TROUTDALE, OR 97060 301 STAUFFER SUPPLY 810 SE SHERMAN PORTLAND, OR 97214 405 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124-6474 79 AMP INC 2800 FULLING MILL PO BOX 3608 HARRISBURG, PA 17105 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646-6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101-1428 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249-2126 462 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 403 MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214-3556 87 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769-2963 74 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010-7438 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214-1752 100 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW <td>J9P4</td> <td>DELTA ENGINEERING</td> <td>19500 SW TETON</td> <td>TUALATIN, OR 97062</td> | J9P4 | DELTA ENGINEERING | 19500 SW TETON | TUALATIN, OR 97062 | | STAUFFER SUPPLY 810 SE SHERMAN PORTLAND, OR 97214 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124-6474 AMP INC 2800 FULLING MILL PO BOX 3608 HARRISBURG, PA 17105 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646-6013 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101-1428 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249-2126 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214-3556 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769-2963 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010-7438 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214-1752 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124-6629 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952-1152 | JR05 | TRIQUEST CORP | 3000 LEWIS AND CLARK HWY | VANCOUVER, WA 98661-2999 | | 805 NORTH STAR NAMEPLATE 5750 NE MOORE COURT HILLSBORO, OR 97124-6474 79 AMP INC 2800 FULLING MILL PO BOX 3608 HARRISBURG, PA 17105 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646-6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101-1428 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249-2126 462 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 4013 MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214-3556 87 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769-2963 84 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010-7438 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214-1752 90 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124-6629 35 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952-1152 | JRZ5 | GASKET TECHNOLOGY | 478 NE 219TH AVENUE | TROUTDALE, OR 97060 | | 79 AMP INC 2800 FULLING MILL PO BOX 3608 HARRISBURG, PA 17105 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646-6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101-1428 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249-2126 62 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 113
MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214-3556 87 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769-2963 74 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010-7438 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214-1752 00 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124-6629 35 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952-1152 | KB01 | STAUFFER SUPPLY | 810 SE SHERMAN | PORTLAND, OR 97214 | | 15 RICHCO PLASTIC CO 5825 N TRIPP AVE CHICAGO, IL 60646-6013 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101-1428 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249-2126 62 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 913 MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214-3556 87 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769-2963 74 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010-7438 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214-1752 00 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124-6629 35 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952-1152 | KB05 | NORTH STAR NAMEPLATE | 5750 NE MOORE COURT | HILLSBORO, OR 97124-6474 | | 26 BERG ELECTRONICS INC 825 OLD TRAIL RD ETTERS, PA 17319 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101–1428 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249–2126 62 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 913 MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214–3556 87 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769–2963 74 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010–7438 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214–1752 00 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 35 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952–1152 | 0779 | AMP INC | 2800 FULLING MILL PO BOX 3608 | HARRISBURG, PA 17105 | | 63 MINNESOTA MINING AND MFG CO 3M CENTER ST PAUL, MN 55101–1428 34 3–D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249–2126 62 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 113 MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214–3556 87 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769–2963 74 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010–7438 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214–1752 00 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 35 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952–1152 | 6915 | RICHCO PLASTIC CO | 5825 N TRIPP AVE | CHICAGO, IL 60646-6013 | | 34 3-D POLYMERS 13026 NORMANDIE AVE GARDENA, CA 90249-2126 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 PORTLAND, OR 97214-3556 R7 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769-2963 R8 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010-7438 R94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214-1752 R100 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124-6629 R5 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952-1152 | 2526 | BERG ELECTRONICS INC | 825 OLD TRAIL RD | ETTERS, PA 17319 | | 62 BOYD CORP 6136 NE 87TH AVE PO BOX 20038 PORTLAND, OR 97220 113 MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214–3556 87 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769–2963 74 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010–7438 194 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214–1752 100 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 35 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952–1152 | 4963 | MINNESOTA MINING AND MFG CO | 3M CENTER | ST PAUL, MN 55101-1428 | | MCGUIRE BEARING CO 947 SE MARKET ST PORTLAND, OR 97214–3556 87 MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769–2963 88 MIDDLE ST BRISTOL, CT 06010–7438 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214–1752 1800 216TH AVE NW HILLSBORO, OR 97124–6629 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952–1152 | 8334 | 3-D POLYMERS | 13026 NORMANDIE AVE | GARDENA, CA 90249-2126 | | MINNESOTA MINING MFG CO PO BOX 2963 AUSTIN, TX 78769–2963 SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010–7438 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214–1752 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952–1152 | K262 | BOYD CORP | 6136 NE 87TH AVE PO BOX 20038 | PORTLAND, OR 97220 | | SUPERIOR ELECTRIC CO THE 383 MIDDLE ST BRISTOL, CT 06010–7438 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214–1752 TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952–1152 | X013 | MCGUIRE BEARING CO | 947 SE MARKET ST | PORTLAND, OR 97214-3556 | | 94 AIR-OIL PRODUCTS CORP 2400 E BURNSIDE PORTLAND, OR 97214-1752 1800 216TH AVE NW HILLSBORO, OR 97124-6629 35 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952-1152 | 3387 | MINNESOTA MINING MFG CO | PO BOX 2963 | AUSTIN, TX 78769-2963 | | TRIAX METAL PRODUCTS INC 1800 216TH AVE NW HILLSBORO, OR 97124–6629 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952–1152 | 8474 | SUPERIOR ELECTRIC CO THE | 383 MIDDLE ST | BRISTOL, CT 06010-7438 | | 35 SCHURTER INC 1016 CLEGG COURT PETALUMA, CA 94952–1152 | H194 | AIR-OIL PRODUCTS CORP | 2400 E BURNSIDE | PORTLAND, OR 97214-1752 | | | Y400 | TRIAX METAL PRODUCTS INC | 1800 216TH AVE NW | HILLSBORO, OR 97124-6629 | | 93 MICRODOT INC 50631 E RUSSELL SCHMIDT BLVD MT CLEMENS, MI 48045 | 1935 | SCHURTER INC | 1016 CLEGG COURT | PETALUMA, CA 94952-1152 | | | 3893 | MICRODOT INC | 50631 E RUSSELL SCHMIDT BLVD | MT CLEMENS, MI 48045 | # **Manufacturers Cross Index (Cont.)** | Mfr.
Code | Manufacturer | Address | City, State, Zip Code | |--------------|--------------------------------|---|--------------------------| | 03877 | GILBERT ENGINEERING CO INC | 5310 W CAMELBACK RD | GLENDALE, AZ 85301-7503 | | 05276 | ITT POMONA ELECTRONICS | 1500 E NINTH ST | POMONA, CA 91766-3835 | | 060D9 | UNITREK CORPORATION | 3000 COLUMBIA HOUSE BLVD, SUITE 1
20 | VANCOUVER, WA 98661 | | 24931 | FCI/BERG ELECTRONICS INC | RF/COAXIAL DIV
2100 EARLYWOOD DR
PO BOX 547 | FRANKLIN, IN 46131 | | 54318 | ASTRO-MED INC | 600 EAST GREENWICH AVE | WEST WARWICK, RI 02893 | | 57793 | UNITED MICROWAVE PRODUCTS INC | 22129 S VERMONT AVE
PO BOX V | TORRANCE, CA 90507 | | 64537 | KDI/TRIANGLE CORPORATION | 60 S JEFFERSON RD | WHIPPANY, NJ 07981 | | 71400 | BUSSMANN | DIVISION COOPER INDUSTRIES INC
PO BOX 14460 | ST LOUIS, MO 63178 | | 74868 | AMPHENOL CORP | RF/MICROWAVE OPERATIONS
1 KENNEDY AVE | DANBURY, CT 06810-5803 | | 7X318 | KASO PLASTICS INC | 11015 A NE 39TH | VANCOUVER, WA 98662 | | 80009 | TEKTRONIX INC | 14150 SW KARL BRAUN DR PO BOX 500 | BEAVERTON, OR 97077-0001 | | 85471 | BOYD CORP | 13885 RAMONA AVE | CHINO, CA 91710 | | 91094 | ESSEX GROUP INC SUFLEX/IWP DIV | BAY RD | NEWMARKET, NH 03857-9601 | | 91836 | KINGS ELECTRONICS CO INC | 40 MARBLEDALE ROAD | TUCKAHOE, NY 10707-3420 | | 98291 | ITT CANNON RF PRODUCTS | 585 E MAIN ST | NEW BRITAIN, CT 06051 | | | | | | # **Replaceable Mechanical Parts List** | Fig. &
Index
Number | Tektronix Part
Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Numbe | |---------------------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|-----------------| | FIG. 10-1 | | | | | CABINET | | | | | 650-3676-00 | | | 1 | COVER,LID ASSY:LID/COVER ASSEMBLY | 7X318 | 650-3676-00 | | – 1 | 105-0684-01 | | | 2 | . LATCH ASSEMBLY: | 0J4C1 | 105-0684-01 | | -2 | 213-0839-00 | | | 2 | . SCR,TPG,TF:4–24 X 0.5 L,FLH,POZ | 0KB01 | 213-0839-00 | | -3 | 214-0787-00 | | | 1 | . STEM,LATCH:ACCESS BOX | 7X318 | 1082 | | -4 | 204-0282-00 | | | 1 | . BODY LATCH:ACCESS BOX,DELRIN | 7X318 | 1267 | | -5 | 214-2389-00 | | | 2 | . PIN,ACTUATOR:POWER SWITCH | TK0588 | 214-2389-00 | | -6 | 334-9302-00 | | | 1 | MARKER,IDENT:MARKED TEKTRONIX | 0J4Z2 | 334-9302-00 | | - 7 | 062-9363-00 | | | 1 | CARD,INFO:QUICK REFERENCE | 0J4Z2 | 062-9363-00 | | -8 | 334-7475-00 | | | 1 | MARKER,IDENT:MARKED 1502C | 0KB05 | 334-7475-00 | | | 334-8896-00 | | | 1 | MARKER,IDENT:VOLTAGE WARNING LABEL | 0KB05 | 334-8896-00 | | | 650-3677-00 | | | 1 | CABINET ASSY:BUCKET/HANDLE ASSEMBLY | 7X318 | 650-3677-00 | | _9 | 200-1805-00 | | | 2 | . COVER,HDL LATCH: | 0JR05 | 200-1805-00 | | -10 | 213-0739-00 | | | 2 | . SCR,MACH:10-32 X 0.375,HEX HD,SSTW/NYLON | OKB01 | 213-0739-00 | | -11 | 210-1231-00 | | | 2 | . WSHR,SHLDR:0.82 X 0.9 X 0.07,FBR | 0KB01 | 210-1231-00 | | -12 | 386-3303-01 | | | 2 | . PLATE,SECURING:HANDLE,STEEL | TK1943 | 386-3303-01 | | -13 | 107-0035-00 | | | 4 | . DISC,FRICTION:0.38 X 1.865 X 0.031,ASB | 2K262 | 107-0035-00 | | -14 | 210-1501-00 | B023241 | | 4 | . WSHR,FRICTION:1.820 X 0.388,304SS 20GA | 0J9P4 | 210-1501-00 | | – 15 | 367-0204-01 | B010100 | B023240 | 1 | . HANDLE,CARRY:11.7 L,BLK VINYL W/HDW | 0J9P4 | 367-0204-01 | | | 367-0449-00 | B023241 | | 1 | . HANDLE,CARRY:BLACK VINYL, 302 SST | 0J9P4 | 367-0449-00 | | -16 | 131–1705–01 | | | 1 | . CONN,RCPT,ELEC:POWER INTERCONNECT | 7X318 | 131–1705–01 | | -17 | 213-0012-00 | | | 2 | . SCREW,TPG,TC:4-40 X 0.375,TYPE T,FLH 100 DEG | 73893 | ORD BY DESCR | | -18 | 348-0419-00 | | | 2 | . FOOT,CABINET:FRONT,BLK POLYURETHANE | 7X318 | 1046 | | -19 | 211-0507-00 | | | 4 | . SCR,MACH:6–32 X 0.312,PNH,POZ | 0KB01 | 211-0507-00 | | -20 | 348-0420-01 | | | 2 | . FOOT,CABINET:REAR,BLK POLYURETHANE | 7X318 | 1048 | | -21 | 213-0451-02 | | | 4 | . SCR,EXT,RLV:10-24 X 1.75,SST,PSVT | 0KB01 | 213-0451-02 | | -22 | 354-0175-00 | | | 4 | . RING,RTNG:TYPE E EXT,U/O 0.188 | 2X013 | 1000-18-ST-CD | | -23 | 213-0183-00 | | | 2 | . SCR,TPG,TF:6–20 X 0.5,TYPEB,PNH,POZ | 0KB01 | 213-0183-00 | | -24 | 348-0444-00 | | | 4 | . SEAL,BOLT:0.186 X 0.443,0.05 THK | 80009 |
348-0444-00 | | -25 | 386-4704-00 | | | 2 | . PLATE,REINF:3.8 X 0.434,STL | 7X318 | 386-4704-00 | | -26 | 334-7662-02 | | | 1 | . MARKER,IDENT:MKD REMOVE COVER TO; & W/VOLT INFO | 0KB05 | 334-7662-02 | | -27 | 200-3805-00 | | | 1 | . COVER,FUSE:VOLTAGE SELECT,PC,CLEAR | 0JR05 | 200-3805-00 | | -28 | 214-4276-00 | | | 2 | . THUMBSCREW:6-32 X 0.50,0.317 OD,SST | TK2324 | 214-4276-00 | | -29 | 348-1167-00 | | | 1 | . GASKET:FUSE & VOLTAGE SELECT COVER | 0JRZ5 | 348-1167-00 | | Fig. &
Index
Number | Tektronix Part
Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |---------------------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|------------------| | FIG. 10-2. | | | | | FRAME AND FRONT PANEL | | | | -1 | 366–2097–00 | | | 4 | SHELL,KNOB:DOVE GRAY,0.060 X 0.375 | 7X318 | 1076 | | -2 | 366-2104-00 | | | 1 | KNOB:SET REF/W DOT SET FOR 90 | 7X318 | 1078 | | -3 | 366-2098-00 | | | 2 | SHELL,KNOB:DOVE GRAY W/INDEX DOT | 7X318 | 1077 | | | | | | | EACH KNOB INCLUDES: | | | | | 213-0153-00 | | | 1 | . SETSCREW:5-40 X 0.125,STL,HEX SKT | 0KB01 | ORDER BY DESCR | | -4 | 131-4178-00 | | | 1 | CONN,RCPT,ELEC:BNC,FEMALE SHORTING | 91836 | 752–17–9 | | -5 | 650-3697-00 | | | 1 | DUST COVER ASSEMBLY W/STRAP | 7X318 | 650-3697-00 | | | | | | 1 | SWITCH,ROTARY (SEE A2S3011 REPL) | | | | | | | | 1 | SWITCH,ROTARY (SEE A2S3012 REPL) | | | | | | | | 1 | RESISTOR, VARIABLE (SEE A2R3020 REPL) | | | | | | | | 1 | SWITCH ROTARY (SEE A2S3020 REPL) | | | | | | | | 1 | SWITCH ROTARY (SEE A2S3021 REPL) | | | | | | | | 1 | SWITCH ROTARY (SEE A2S3022 REPL) | | | | | | | | 1 | SWITCH ROTARY (SEE A2S3023) | | | | | | | | 1 | RESISTOR, VARIABLE (SEE A2R2024 REPL) | | | | | | | | 1 | RESISTOR, VARIABLE (SEE A2R1022 REPL) | | | | | | | | | EACH SWITCH AND VARIABLE RESISTOR INCLUDES: | | | | -6 | 210-0583-00 | | | 1 | . NUT,PLAIN HEX:0.25–32 X 0.312 | 0KB01 | 210-0583-00 | | -7 | 210-0940-00 | | | 1 | . WSHR,FLAT:0.25 X 0.375 X 0.02,STL CD PL | 0KB01 | 210-0940-00 | | | | | | | EACH VARIABLE RESISTOR INCLUDES: | | | | -8 | 354-0581-00 | | | 1 | . O-RING:0.25 X 0.062 OD XSECT | 5H194 | 2-010-S455-70 | | -9 | 348-1145-01 | | | | . SEAL,CONT SHAFT:0.125 X 0.187 OD X 0.3 L | 80009 | 348-1145-01 | | -10 | 366-0655-05 | | | 1 | PUSH BUTTON:MENU,0.523 X 0.253 | 0JR05 | 366-0655-05 | | -11 | 366-0655-01 | | | 1 | PUSH BUTTON:VIEW INPUT | 0JR05 | 366-0655-01 | | -12 | 366-0655-02 | | | 1 | PUSH BUTTON:VIEW STORE | 0JR05 | 366-0655-02 | | -13 | 366-0655-03 | | | 1 | PUSH BUTTON:VIEW DIFF | 0JR05 | 366-0655-03 | | -14 | 366-0655-04 | | | 1 | PUSH BUTTON:STORE | 0JR05 | 366-0655-04 | | -15 | 334-7111-01 | | | 1 | MARKER,IDENT:MARKED 1502C | 0KB05 | 334-7111-01 | | -16 | 213-1089-00 | | | 4 | SCREW,TYPE-F:6-32 X .500,FLH,POS,410 SS | OKB01 | 213-1089-00 | | -17 | 614-0389-01 | | | 1 | FRONT PANEL ASSEMBLY | 80009 | 614-0389-01 | | -18 | 348-0477-00 | | | 1 | . SEAL,RBR STRIP:0.94W X 0.062THK X 28.0L | 2K262 | R-10460 | | -19 | 348-0477-00 | | | 1 | . SEAL,RBR STRIP:0.94W X 0.062THK X 28.0L | 2K262 | R-10460 | | -20 | 348-1144-00 | | | 1 | . GASKET,COND:ELASTOMER W/AL | 0JRZ5 | 348–1144–00 | | -21 | 348-0920-00 | | | 1 | . SHLD GSKT,ELEC:PUSH BUTTON | 28334 | 348-0920-00 | | -22 | 331-0502-00 | | | 1 | . WINDOW,DSP,PORT:2.335 X 4.357 X 0.125,GLASS | TK2624 | 331-0502-00 | | -23 | | | | 1 | CKT BD ASSY:FRONT PANEL (SEE A2 REPL) | | | | Fig. &
Index
Number | Tektronix Part
Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |---------------------------|--------------------------|-------------------------|-------------------------|-----|--|--------------|------------------| | -24 | 211-0658-00 | | | 4 | SCR,ASSEM WSHR:6-32 X 0.312,PNH,POZ | 0KB01 | 211-0658-00 | | -25 | | | | AR | . CONN,HDR:PCB,MALE (SEE A2 REPL) | | | | -26 | 131-0993-00 | | | 1 | BUS CONDUCTOR:SHUNT/SHORTING,FEMALE | 22526 | 65474-006 | | -27 | | | | 1 | . CONN,HDR:PCB,MALE (SEE A2 REPL) | | | | -28 | 342-0731-00 | | | 1 | INSULATOR:FISHPAPER,3.6 X 3.0 | 80009 | 342-0731-00 | | -29 | | | | 1 | DISPLAY MODULE:(SEE A5 REPL) | | | | -30 | 220-0407-00 | | | 4 | NUT,SLFLKG,HEX:6-32 X 0.312 HEX | 0KB01 | 220-0407-00 | | -31 | 337-2193-05 | | | 2 | SHIELD,ELEC:EMI,BOTTOM | TK1943 | 337-2193-05 | | | 211-0661-00 | | | 7 | SCR,ASSEM WSHR:4-40 X 0.25,PNH,POZ | 0KB01 | 211-0661-00 | | | 129-1092-00 | | | 1 | SPACER,POST:0.605 L,4–40,HEX | 58474 | BP21BLACK | | | 210-1307-00 | | | 1 | WHSR,LOCK:0.115 ID,SPLIT | 0KB01 | 210-1307-00 | | | 210-1002-00 | | | 1 | WSHR,FLAT:0.125 X 0.25 OD X 0.022 | 0KB01 | 210-1002-00 | | | 334-8135-00 | | | 1 | MKR,IDENT:MKD EMI SHIELD INSTRU | 0J4Z2 | 334-8135-00 | | | | | | | (NOT ILLUSTRATED AT THIS TIME) | | | | -32 | 650-3714-00 | | | 1 | ON/OFF SHAFT ASSEMBLY | TK2545 | 650-3714-00 | | -33 | 220-0961-00 | | | 1 | NUT BLOCK:6-32 X 0.438,AL,CHROMATE | 5Y400 | 220-0961-00 | | -34 | 213-0966-00 | | | 1 | . SETSCREW:6-32 X 0.188 HEX,W/NYLON | 80009 | 213-0966-00 | | | | | | | NOTE: THE FOLLOWING FOUR COMPONENTS ARE SUBPARTS OF THE CHASSIS ASSEMBLY | | | | -35 | 211-0005-00 | | | 3 | . SCR,MACH:4-40 X 0.125,PNH,POZ | 0KB01 | 211-0005-00 | | -36 | 210-0851-00 | | | 3 | . WSHR,FLAT:0.119 X 0.375 OD X 0.025 | 0KB01 | 210-0851-00 | | -37 | 105-0954-01 | | | 1 | . LEVER:3.25L X 0.5W X 0.05,AL | 80009 | 105-0954-01 | | -38 | 384-1674-01 | | | 1 | . EXTENSION SHAFT:7.59 L X 0.5,AL | 80009 | 384-1674-01 | | -39 | 650-3699-00 | | | 1 | CHART EXTRUSION ASSEMBLY | 0J7N9 | 650-3699-00 | | -40 | 212-0001-00 | | | 2 | SCR,MACH:8–32 X 0.25,PNH,POZ | 0KB01 | 212-0001-00 | | -41 | 210-0008-00 | | | 2 | WSHR,LOCK:#8,INTL,0.02 THK | 0KB01 | ORD BY DESCR | | -42 | 210-0458-00 | | | 1 | NUT,PL,ASSEM WA:8-32 X 0.344 | 0KB01 | ORD BY DESCR | | -43 | | | | 1 | CA ASSY: (SEE WIRE ASSEMBLIES) | | | | | 200-3737-00 | | | 1 | COVER,FRONT:OPTION PORT | 0J9P4 | 200-3737-00 | | | | | | | COVER PORT INCLUDES: | | | | -44 | 200-3451-01 | | | | . COVER,PORT: | 5Y400 | 200-3451-01 | | -45 | 348-1118-01 | | | 1 | . GASKET:OPTION PORT COVER,0.062 THK | 0JRZ5 | 348-1118-01 | | -46 | 105-0959-01 | | | 1 | . LCH,OPT PORT COVER:STEEL,ZINC PLATE | TK1423 | DZUSDP109SMOD | | -47 | 407–3675–00 | | | 1 | . FRAME:OPTION PORT COVER | 0J9P4 | 407–3675–00 | | -48 | 213-0123-00 | | | 2 | . SCR,TPG,TF:6-32 X 0.375,FLH100 DEG,POZ | 0KB01 | ORD BY DESCR | | -49 | 650-3742-00 | | | 1 | COVER,GASKET ASSY:RANGE BOARD | 0J9P4 | 650-3742-00 | | -50 | 211-0661-00 | | | 2 | SCR,ASSEM WSHR:4–40 X 0.25,PNH,POZ | 0KB01 | 211-0661-00 | | -51 | | | | 1 | CKT BD ASSY: (SEE A4 REPL) | | | | Fig. &
Index | Taktraniy Dart | Serial No. | Serial No. | | | NA4. | | |-----------------|--------------------------|------------|------------|-----|--|--------------|------------------| | Number | Tektronix Part
Number | Effective | Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | | -52 | 131-0391-00 | | | 1 | . CONN,RF JACK:SMB,50 OHM | 98291 | 051-051-0049 | | -53 | 131-3360-00 | | | 1 | . CONN,HDR:PCB,MALE,SHRD/4SIDES | 53387 | N2520-6002UB | | -54 | 441–1683–00 | | | 1 | CHASSIS,FRONT:AL
NOTE: FRONT CHASSIS IS A SUBPART TO CHASSIS ASSY | 0J260 | 441–1683–00 | | -55 | 211-0661-00 | | | 2 | SCR,ASSEM WSHR:4-40 X 0.25,PNH,POZ | 0KB01 | 211-0661-00 | | | 210-1307-00 | | | 2 | WSHR,LOCK:0.115 ID,SPLIT | 0KB01 | ORD BY DESCR | | -56 | 211-0007-00 | | | 1 | SCR,MACH:4–40 X 0.188,PNH,POZ | 0KB01 | 211-0007-00 | | -57 | 210-1307-00 | B024162 | | 1 | WSHR,LOCK:0.115 ID,SPLIT | 0KB01 | ORD BY DESCR | | -58 | 351-0755-00 | | | 4 | GUIDE,CKT BD:POLYCARBONATE,2.5 L
NOTE: CKT BD GUIDES ARE SUBPARTS OF CHASSIS ASSY | 06915 | TCG1-2.500-03 | | -59 | 210-0586-00 | | | 1 | NUT,PL,ASSEM W:4-40 X 0.25 | 0KB01 | ORD BY DESCR | | -60 | | | | 1 | POWER SUPPLY ASSY: (SEE A3 REPL) | | | | -61 | 211-0007-00 | | | 1 | SCR,MACH:4–40 X 0.188,PNH,POZ | 0KB01 | 211-0007-00 | | | 211-0105-00 | | | 1 | SCR,MACH:4–40 X 0.188,FLH,POZ | 0KB01 | ORD BY DESCR | | | 211-0661-00 | | | 1 | SCR,ASSEM WSHR:4-40 X 0.25,PNH,POZ | 0KB01 | 211-0661-00 | | -62 | 211-0198-00 | | | 2 | SCR,MACH:4-40 X 0438,PNH,POZ | 0KB01 | 211-0198-00 | | -63 | 210-0005-00 | | | 1 | WSHR,LOCK:#6 EXT,0.02 THK,STL,CD PL | 0KB01 | 210-0005-00 | | -64 | | | | 1 | CKT BD ASSY: (SEE A1 REPL) | | | | -65 | 211-0661-00 | | | 9 | SCR,ASSEM WSHR:4-40 X 0.25,PNH,POZ | 0KB01 | 211-0661-00 | | -66 | 131-3361-00 | | | 1 | . CONN,HDR:PCD,MALE,RTANG W/SHRD | 53387 | 2526-5002UB | | -67 | 131–3181–00 | | | 1 | . CONN,HDR:PCB,MALE,RTANG W.SHRD | 53387 | 2540-5002UB | | -68 | 131-3359-00 | | | 1 | . CONN,HDR:PCB,MALE,2 X 10 | 53387 | 2520-5002UB | | -69 | 136-0755-00 | | | 1 | . SKT,DIP:FEMALE,2 X 14 | 00779 | 2-641605-3 | | -70 | 131-4183-00 | | | 1 | . CONN,HDR:PCB,MALE,2 X 7 | 53387 | 2514-6002UB | | -71 | 213-0904-00 | | | 4 | SCR,TPG,TR:6-32 X 0.5 PNH,TORX | 0KB01 | 213-0904-00 | | -72 | | | | 1 | CHASSIS,MAIN:AL (SEE PWR SUPPLY ASSY) | | | | | 040-1276-01 | | | | BATTERY ASSY | 80009 | 040–1276–01 | | -73 | 343-1436-00 | | | 1 | . CLAMP,BTRY MT:ALUMINUM | 0J260 | 343-1436-00 | | -74 | 212-0001-00 | | | 2 | . SCREW,MACH:8–32 X 0.25,PNH,STL CD PL,POZ | 0KB01 | 212-0001-00 | | -75 | 210-0007-00 | | | 2 | . WSHR,LOCK:#8 EXT,0.02 THK,CD PL STL | 0KB01 | ORD BY DESCR | | -76 | 348-0090-00 | | | 3 | . PAD,CUSHIONING:2.03 X 0.69 X 0.312 SI RBR | 85471 | R-1047OMED/PSA | | -77 | 146-0066-00 | | | 1 | . BATTERY:12V LEAD ACID,3.4AH,5.28 X 2.36 X 2.6 RECT | 0DWW6 | LCR-12V3.4P | | | | | | 1 | . CA ASSY:(SEE WIRE ASSYS) | | | | Fig. &
Index
Number | Tektronix Part
Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part
Number | |---------------------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|------------------| | FIG. 10-3 | | | | | 1503C OPTION 06 | | | | -1 | | | | 1 | CKT BD ASSY: (SEE A6 REPL) | | | | -2 | 211-0658-00 | | | 2 | SCR,ASSEM WSHR:6-32 X 0.312,PNH,POZ | 78189 | S51-060545-0X | | -3 | 385-0122-00 | | | 1 | SPACER,POST:0.937 L W/6-32THD,AL 0.25 HEX | 80009 | 385-0122-00 | | -4 | 131-3359-00 | | | 1 | . CONN,HDR:MALE,RTANG,2 X 10 | 53387 | 2520-5002UB | | - 5 | 351–0755–00 | | | 2 | GUIDE,CKT BD:POLYCARBONATE,2.5 L | 06915 | TCG1-2.500-03 | | FIG. 10-4 | | | | | POWER SUPPLY | | | | -1 | | | | 1 | CKT BD ASSY:(SEE A3A1 REPL) | | | | -2 | 211-0661-00 | | | 4 | SCR,ASSEM WSHR:4-40 X 0.25,PNH,POZ | 0KB01 | 211-0661-00 | | -3 | 131-3445-00 | | | 1 | . CONN,HDR:MALE,RTANG,2 X 7 | 53387 | 2514-5002UB | | -4 | 131-4177-00 | | | AR | . CONN,HDR:MALE,STR,1 X 31 W/INSUL | 22562 | 65576–131 | | -5 | 131–1857–00 | | | AR | . CONN,HDR:MALE,STR,1 X 36 | 22526 | 65507-B6 | | | | | | 1 | . XSTR: (SEE CHASSIS MOUNTED PARTS) | | | | -6 | 211-0507-00 | | | 1 | . SCR,MACH:6-32 X 0.312,PNH,POZ | 0KB01 | 211-0507-00 | | -7 | 210-0561-00 | | | 1 | . NUT,PL,HEEX:6-32 X 0.188 | 0KB01 | 210-0561-00 | | | | | | 1 | . IC: (SEE A3A1U2010 REPL) | | | | -8 | 211-0507-00 | | | 1 | . SCR,MACH:6–32 X 0.312,PNH,POZ | 0KB01 | 211-0507-00 | | -9 | 210-0561-00 | | | 1 | . NUT,PL,HEX:6–32 X 0.188 | 0KB01 | 210-0561-00 | | | 253-0188-00 | | | 1 | . TAPE,PRESS SENS:URETHANE FOAM | 24963 | 4008 3/4 | | | 162-0503-00 | | | AR | . INSUL SLVG,ELEC:0.042 ID/ACRYLIC/FBRGLASS | 91094 | ORD BY DESCR | | | 650-3715-00 | | | | POWER SUPPLY ASSEMBLY WITH CHASSIS MOUNTED ELECTRICAL PARTS | 0J7N9 | 650–3715–00 | | -10 | 220-0547-01 | | | 4 | . NUT BLOCK:4-40 X 0.282 | TK0914 | ORD BY DESCR | | -11 | 211-0105-00 | | | 4 | . SCR,MACH:4–40 X 0.188,FLH,POZ | 0KB01 | 211-0105-00 | | -12 | | | | 1 | . CHASSIS,PWR SUPPLY:SIDE | | | | -13 | 211-0105-00 | | | 3 | . SCR,MACH:4–40 X 0.188,FLH,POZ | OKB01 | 211-0105-00 | | -14 | 120-1607-00 | B020000 | B023217 | 1 | . A3T201 XFMR: PWR,115/230VAC,50/60HZ | 08779 | DP241-6-24 | | | 120-1922-00 | B023218 | | 1 | . A3T201 XFMR: PWR,115/230VAC,50/60HZ | 0JR03 | Z-91260A | | | 307-0449-00 | | | 1 | . A3R101 RES, V SENSITIVE:1900PF,100A,130V | 34371 | V130LA20A | | -15 | 212-0112-00 | | | 2 | . SCR,MACH:8–32 X 0.188,TRH,SST,POZ | 0KBO1 | ORD BY DESCR | | -16 | 210-0002-00 | | | 2 | . WSHR,LOCK:#8 EXT,0.02 THK | 0KBO1 | ORD BY DESCR | | -17 | 260-2372-00 | | | 1 | . A3S201 SWITCH,ROTARY: | 61935 | 033-4501 | | -18 | 204-0832-00 | | | 1 | . BODY,FUSEHLDR:3AG & 5 X 20MM FUSES | 61935 | 031 1673 | # Replaceable Mechanical Parts List (Cont.) | Fig. &
Index
Number | Tektronix Part
Number | Serial No.
Effective | Serial No.
Discont'd | Qty | Name & Description | Mfr.
Code | Mfr. Part Number | |---------------------------|--------------------------|-------------------------|-------------------------|-----|---|--------------|------------------| | | 159-0029-01 | | | 1 | . A3F101 FUSE CARTRIDGE:BUSSMAN ONLY | 71400 | MDL3/10 | | | 159-0054-00 | | | 1 | . A3F101 FUSE CARTRIDGE:3AG,0.15A,250V | 71400 | MDL 15/100 | | -19 | 200-2264-00 | | | 1 | . CAP,FUSEHLDR:3AG FUSES,SFTY CONTROL | 61935 | FEK 031 1666 | | -20 | 119-3488-00 | | | 1 | . A3FL1 FILTER,RFI: 1A,115/230VAC,50/60HZ | 0GV52 | FN328-1/01 | | -21 | 211-0101-00 | | | 2 | . S <i>CR,MACH:4–40 X 0.25,FLH,100 DEG,POZ</i> | 0KB01 | ORD BY DESCR | | -22 | 210-0202-00 | | | 1 | . TERMINAL,LUG:0.146 ID,LOCKING | 0KB01 | 210-0202-00 | | -23 | 211-0658-00 | | | 1 | . SCR,ASSEM,WA:6-32 X 0.312,PNH,POZ | 0KB01 | 211-0658-00 | | -24 | | | | 1 | . CHASSIS,PWR SUPPLY: | | | | | 334–3379–01 | | | 1 | . MARKER,IDENT:MKD GROUND SYMBOL | 0KB05 | 334–3379–01 | | | | | | | POWER CORD OPTIONS | | | | | 161-0066-00 | | | 1 | CA ASSY,PWR:3,18 AWG,250V/10A,98
INCH,STR,IEC320,RCPT X NEMA 5-15P,US | 0B445 | ECM-161-0066-00 | | | 161–0066–10 | | | 1 | CA ASSY,PWR:3,1.0 MM SQ,250V/10A,2.5
METER,STR,IEC320,RCPT X 13A,FUSED UK PLUG
(13A FUSE),UNI | TK2541 | ORD BY DESCR | | | 161-0066-11 | | | 1 | CA ASSY,PWR:3,1.0MM SQ,250V/10A,2.5
METER,STR,IEC320,RCPT,AUSTRALIA | 80126 | ORD BY DESCR | | | 161-0066-12 | | | 1 | CA ASSY,PWR:3,18 AWG,250V/10A,98
INCH,STR,IEC320,RCPT X NEMA 6–15P,US | S3109 | ORD BY DESCR | | | 161–0154–00 | | | 1 | CA ASSY,PWR:3,1.0MM SQ,250V/10A,2.5
METER,STR,IEC320,RCPT,SWISS | 5F520 | 86515030 | | | | | | | STANDARD ACCESSORIES | | | | | 016-0915-00 | | | 1 | BATTERY ASSY:1502C/1503C | 80009 | 016-0915-00 | | | 159-0029-01 | | | 1 | FUSE,CARTRIDGE:3AG,0.3A,250V,12 MIN,BUSSMAN ONLY | 71400 | MDL3/10 | | | 159-0054-00 | | | 1 | FUSE,CARTRIDGE:3AG,0.15A,250V,25SEC | 71400 | MDL 15/100 | | | 161-0228-00 | | | 1 | CABLE ASSY,PWR:3,18 AWG,98 L,SJTWA,BLK,
60 DEG C,MC-6-3C X STR,BME,10A/125V | TK6372 | FH49061 | | | 200-3737-00 | | | 1 | COVER,FRONT:OPTION PORT | 0J260 | | | | 011-0123-00 | | | 1 | TERMN,COAXIAL:50 OHM,BNC,VSWR DC-4GHZ 1.15 | 64537 | T190CS | | | 103-0028-00 | | | 1 | ADAPTER, CONNEC:BNC FEMALE TO FEMALE, 1.3 L, GOLD/NICKEL | 24931 | 28A100-2 | | | 012-1351-00 | | | 1 | CABLE,INTCON:93 OHM,10 FEET L,W/STR RELIEF | TK6159 | ASI 65293 | | | 013-0261-00 | | | 1 | ACCESS,ADAPTER:2 WIRE,FEMALE,BNC/W STR RELIEF TO ALLIGATOR CLIPS,7.0 L | TK6159 | PAMONA #2630 | | | 103-0058-00 | | | 1 | ADAPTER,CONN:N FEMALE TO BNC MALE | 91836 | KN-99-46 | | | 012-1350-00 | | | 1 | CABLE,INTCON:50 OHM,3 FEET L,W/STR RELIEF | TK6159 | ASI 65289 | | | 070-7323-XX | | | 1 | MANUAL,TECH:OPERATORS,1503C | 80009 | | | | 003-1419-00 | | | 1 | SLIDE RULE:TDR W/MANUAL | TK2233 | | | | | | | | | | | # Replaceable Mechanical Parts List (Cont.) | Fig. &
Index | Tektronix Part | Serial No. | Serial No. | | | Mfr. | | |-----------------|----------------|------------|------------|-----|--|--------|------------------| | Number | Number | Effective | Discont'd | Qty | Name & Description | Code | Mfr. Part Number | | | | | | | OPTIONAL ACCESSORIES | | | | | 016-0814-00 | | | 1 | POUCH,ACCESSORY:11.5 L X 9.5 W X 1.75 H,VINYL | TK2582 | | | | 070–7170–01 | | | 1 | MANUAL,TECH:SERVICE,1503C S/N B01 | TK2548 | 070–7170–01 | | | 070-7170-XX | | | 1 | MANUAL,TECH:SERVICE,1503C S/N B02 | 80009 | 070-7170-00 | | | 040–1276–00 | | | 1 | MOD KIT:150XC OPTION 03 BATTERY INCLUDING INSTRUCTIONS | 80009 | 040–1276–00 | | | 119-3616-00 | | | 1 | CHART RECORDER:SPLASH PROOF YTIS | 54318 | YT-1S | | | 006-7647-00 | | | 1 | PAPER,CHART:THERMAL,YT1,SINGLE (100 FEET) | 54318 | 40952-903 | | | 006-7677-00 | | | 1 | PAPER,CHART:THERMAL,YT1,BOX OF 25 | 80009 | | | | 006-7681-00 | | | 1 | PAPER,CHART:THERMAL,YT1,BOX OF 100 | 80009 | 006-7681-00 | | | 012-0671-03 | | | 1 | CABLE,INTCON:360.0 L PA1 TO OPTION | 060D9 | 012-0671-03 | | | 103-0029-00 | | | 1 | ADAPTER, CONN:BNC MALE TO MALE | 24931 | 28A101-4 | | | 013-0261-00 | | | 1 | ACCESS,ADAPTER:2 WIRE,FEMALE,BNC/W STR RELIEF TO ALLIGATOR CLIPS,7.0 L | TK6159 | PAMONA #2630 | | | 013-0076-01 | | | 1 | ADAPTER,CONN:BNC TO RETRACTABLE HOOK TIP | 05276 | MODEL 3788 | | | 103-0090-00 | | | 1 | ADAPTER, CONNEC:BNC FEMALE TO DUAL BANANA PLUG | 05276 | 1269 ADAPTER | | | 103-0035-00 | | | 1 | ADAPTER, CONNEC:BNC DUAL BINDING POST | 05276 | 1296 | | | 103-0058-00 | | | 1 | ADAPTER,CONN:N FEMALE TO BNC MALE | 91836 | KN-99-46 | | | 103-0045-00 | | | 1 | ADAPTER, CONN:N MALE TO BNC FEMALE | 24931 | 29 JP104-3 | | | 103-0015-00 | | | 1 | ADAPTER,CONN:BNC TO UHF | 24931 | 29JP100-3 | | | 103-0032-00 | | | 1 | ADAPTER,CONN:BNC MALE TO UHF FEMALE | 74868 | 30429–2 | | | 103-0158-00 | | | 1 | ADAPTER, CONN:BNC FEMALE TO F SERIES MALE | 24931 | 29JP151-1 | | | 013-0126-00 | | | 1 | ADAPTER,CONN:BNC PLUG TO F JACK (BNC MALE TO F TYPE FEMALE) | 80009 | 013-0126-00 | | | 017-0063-00 | | | 1 | ADAPTER,CONN:GR TO TEK CONN,W/PNL MT NUT | 03877 | 0874-9700 | | | 017-0064-00 | | | 1 | ADAPTER,CONN:TYPE BNC TO GR,MALE | 57793 | ORD BY DESCR | | | 012-1350-00 | | | 1 | CABLE,INTCON:50 OHM,3 FEET L,W/STR RELIEF | TK6159 | ASI 65289 | | | 011-0102-00 | | | 1 | TERMN,COAXIAL:75 OHM,BNC | 80009 | 011-0102-00 | | | 015-0327-00 | | | 1 | FILTER,DIR CUR:1502 | 80009 | 015-0327-00 | | | 013-0169-00 | | | 1 | ADAPTER ASSY:ISLN XFMR,BALANCED OUTPUT | 80009 | 013-0169-00 | | | 015-0495-00 | | | 1 | XFMR,PULSE:INVERTER,TORIOD,1503,8 BIFILAR TURNS | 80009 | 015-0495-00 | | | 015-0500-00 | | | 1 | ADAPTER KIT:TOKEN RING NETWORK | 80009 | 015-0500-00 | | | 015-0579-00 | | | 1 | ADAPTER,TDR:USOC NETWORK | 80009 | | | | 015-0578-00 | | | 1 | ADAPTER KIT:STARLAN NETWORK | 060D9 | | | | 015-0600-00 | | | 1 | ADAPTER,RING:TOKEN RING INTERFACE | 80009 | 015-0600-00 | Figure 10-1: 1503C Cabinet 1503C MTDR Service Manual Figure 10-3: 1503C Option 06 (Ethernet) 1503C MTDR Service Manual Figure 10-4: 1503C Power Supply 1503C MTDR Service Manual # **Glossary** #### **Aberrations** Imperfections or variations from a desired signal. In TDRs, a pulse of electrical energy is sent out over the cable. As the pulse-generating circuitry is turned on and off, the pulse is often distorted slightly and no longer is a perfect step or sine-shaped waveform. AC Alternating current is a method of delivering electrical energy by periodically changing the direction of the flow of electrons in the circuit or cable. Even electrical signals designed to deliver direct current (DC) usually fluctuate enough to have an AC component. ## Accuracy The difference between a measured, generated, or displayed value and the true value. #### Cable Electrical conductors that are usually insulated and often shielded. Most cables are made of metal and are designed to deliver electrical energy from a source (such
as a radio transmitter) across a distance to a load (such as an antenna) with minimal energy loss. Most cables consist of two conductors, one to deliver the electrical signal and another to act as a return path, which keeps both ends of the circuit at nearly the same electrical potential. In early electrical systems and modern systems that over long distances use the earth and/or air as the return path, and the term "ground" or "ground wire" is often used to describe one of the wires in a cable pair. # **Cable Attenuation** The amount of signal that is absorbed in the cable as the signal propagates down it. Cable attenuation is typically low at low frequencies and higher at high frequencies and should be corrected for in some TDR measurements. Cable attenuation is usually expressed in decibels at one or several frequencies. See also: dB and Series Loss. # Cable Fault Any condition that makes the cable less efficient at delivering electrical energy than it was designed to be. Water leaking through the insulation, poorly mated connectors, and bad splices are typical types cable faults. # Capacitance (see Reactance) # **Characteristic Impedance** Cables are designed to match the source and load for the electrical energy that they carry. The designed impedance is often called the characteristic impedance of the cable. The arrangement of the conductors with respect to each other is the major factor in designing the impedance of cables. # Conductor Any substance that will readily allow electricity to flow through it. Good conductors are metals such as silver, copper, gold, aluminum, and zinc (in that order). dB dB is an abbreviation for decibel. Decibels are a method of expressing power or voltage ratios. The decibel scale is logarithmic. It is often used to express the efficiency of power distribution systems when the ratio consists of the energy put into the system divided by the energy delivered (or is some cases, lost) by the system. Our instrument measures return loss. The formula for decibels is: $dB = 2 - \log(Vi/Vl)$ where Vi is the voltage of the incident pulse, VI is the voltage reflected back by the load, and log is the decimal-based logarithmic function. The dB vertical scale on our instrument refers to the amount of voltage gain (amplification) the instrument applies to the signal before displaying it. For example, when the instrument is amplifying the voltage by one hundred, the dB scale would read 40 dB, which is 20 log 100. DC Direct current is a method of delivering electrical energy by maintaining a constant flow of electrons in one direction. Even circuits designed to generate only AC often have a DC component. Dielectric (see Insulation) Domain A mathematical term that refers to the set of numbers that can be put into a function (the set of numbers that comes out of the function is called the "range"). A time-domain instrument performs its function by measuring time. **Impedance** The total opposition to the flow of electrical energy is a cable or circuit. Impedance is made partly of resistance (frequency independent) and partly of reactance (frequency dependent). Although impedance is expressed in units of Ohms, it must not be confused with the simple resistance that only applies to DC signals. Technically, impedance is a function of the frequency of the electrical signal, so it should be specified at a frequency. As a practical matter, the impedance of most cables changes very little over the range of frequencies they are designed for. Impedance Mismatch A point in a cable or system where the incident electrical energy is redistributed into absorbed, reflected, and/or transmitted electrical energy. The transmitted electrical energy after the mismatch is less than the incident electrical energy. **Incident Pulse** The pulse of electrical energy sent out by the TDR. The waveform shown by the TDR consists of this pulse and the reflections of it coming back from the cable or circuit being tested. Inductance (see Reactance) ### Insulation A protective coating on an electrical conductor that will not readily allow electrical energy to flow away from the conductive part of the cable or circuit. Insulation is also called dielectric. The kind of dielectric used in a cable determines how fast electricity can travel through the cable (see Velocity of Propagation). #### **Jitter** The short term error or uncertainty in the clock (timebase) of a TDR. If the timing from sample to sample is not exact, the waveform will appear to move back and forth rapidly. An acronym for Liquid Crystal Display. It is the kind of display used on this instrument, so the terms display and LCD are often used interchangeably. #### Millirho rho (ρ) is the reflection coefficient of a cable or power delivery system. It is the ratio of the voltage reflected back from the cable or circuit due to cable faults or an impedance mismatch at the load, divided by the voltage applied to the cable. Millirho are thousandths of one rho. Rho measurements are often used to judge how well the cable is matched to the load at the other end of the cable. If there is an open circuit in the cable, nearly all the energy will be reflected back when a pulse is sent down the cable. The reflected voltage will equal the incident pulse voltage and rho will be +1. If there is a short circuit in the cable, nearly all the energy will be delivered back to the instrument through the ground or return conductor instead of being sent to the load. The polarity of the reflected pulse will be the opposite of the incident pulse and rho will be -1. If there is no mismatch between the cable and the load, almost no energy will be reflected back and rho will be 0. In general, a load or fault with higher impedance than the cable will return a rho measurement of 0 to +1, and a load or fault with a lower impedance will return a rho measurement of 0 to -1. The scale for rho measurements is determined by the height of the incident pulse. A pulse two divisions high means that each division is 0.5 rho (500 millirho). A pulse set to be four divisions high would make each division 0.25 rho (250) millirho). #### Noise Any unwanted electrical energy that interferes with a signal or measurement. Most noise is random with respect to the signals sent by the TDR to make a measurement and will appear on the waveform, constantly constantly moving up and down on the display. The NOISE FILTER control sets how many waveforms will be averaged together to make the waveform displayed. Noisy waveforms appear to fluctuate around the real signal. Because it is random, noise will sometimes add to the real signal and sometimes subtract energy from the real signal. By adding several noisy waveforms together, the noise can be "averaged" out of the signal because the average amount of noise adding to the signal will be nearly the same as the average amount of noise subtracting from the signal. More waveforms in an average are more likely to approach the real signal (although it takes longer to acquire and add together more waveforms). **Open Circuit** In a cable, a broken conductor will not allow electrical energy to flow through it. These circuits are also called broken circuits. The circuit is open to the air (which looks like a very high impedance). Precision The statistical spread or variation in a value repeatedly measured, generated, or displayed under constant conditions. Also called repeatability. Reactance A conductor's opposition to the flow of AC electrical energy through it. All conductors have some reactance. Reactance is made up of capacitance and inductance. Capacitance is the ability of conductors separated by thin layers if insulation (dielectric) to store energy between them. Inductance is the ability of a conductor to produce induced voltage when the electrical current through it varies. All conductors have some capacitance and inductance, so all conductors have some reactance, which means they all have impedance. Reflectometer An instrument that uses reflections to make measurements. Our reflectometers use electrical energy that is reflected back from points along a cable. Resistance A conductor's opposition to the flow of DC electrical energy through it. All conductors have a certain amount of resistance. Resistance is the low (or zero) frequency part of impedance. Resolution For a given parameter, the smallest increment or change in value that can be measured, generated, or displayed. **Return Loss** The amount of energy reflected or returned from a cable indicates how much the impedance in the system is mismatched. The ratio of the energy sent out by the TDR, divided by the energy reflected back, expressed in the logarithmic dB scale, is called return loss. Rho (ρ) (see Millirho) Risetime The time it takes a pulse signal to go from 10% to 90% of the change in voltage. **RMS** An acronym for Root Mean Squared. RMS is a way of measuring how much deviation there is from a known (or desired) waveform. It is also the method used to calculate how much power is contained in an AC waveform. Sampling Efficiency Our instruments make measurements by taking a succession of samples in time and displaying them as a waveform with voltage on the vertical scale (up and down) and time along the horizontal scale (across the display). The circuitry that captures and holds the samples cannot instantly change from one voltage level to another. It might take the circuit several samples to settle in at the new voltage after a rapid change in the waveform. How efficiently the circuit moves from one sampled voltage level to the next is called sampling efficiency. If the efficiency is too low, the waveforms will be smoothed or rounded. If the efficiency is too high (above 100%), the circuit will actually move beyond the new voltage level in a phenomenon known as overshoot, which becomes an unwanted source of noise in the waveform. ### **Series Loss** Conductors all have some DC resistance to the flow of
electrical energy through them. The amount of resistance per unit length is usually nearly constant for a cable. The energy lost overcoming this series resistance is called series loss. The series loss must be compensated for when measuring the return loss or impedance mismatch at the far end of long cables. #### **Short Circuit** In a cable, a short circuit is a place where the signal conductor comes into electrical contact with the return path or ground conductor. The electrical circuit is actually shorter than was intended. Short circuits are caused by worn, leaky, or missing insulation. # **Stability** The change in accuracy of a standard or item of test equipment over an extended period of time. Unless otherwise specified, the period of time is assumed to be the calibration interval (might also apply to range, resolution, or precision as a function of time). The term stability might also be used to denote changes resulting from environmental influences, such as temperature, humidity, vibration, and shock. #### TDR An acronym for Time-Domain Reflectometer. These instruments are also called cable radar. They send out pulses of energy and time the interval to reflections. If the velocity of the energy through the cable is known, distances to faults in the cable can be displayed or computed. Conversely, the speed that the energy travels through a cable of known length can also be computed. The way in which the energy is reflected and the amount of the energy reflected indicate the condition of the cable. # **Velocity of Propagation** (Vp) Electrical energy travels at the same speed as light in a vacuum. It travels slower than that everywhere else. The speed that it travels in a cable is often expressed as the relative velocity of propagation. This value is just a ration of the speed in the cable to the speed of light (so it is always a number between 0 and 1). A velocity of propagation value of 0.50 indicates that the electrical energy moves through the cable at half the speed of light. # **Waveform Averaging** (see Noise) # Index | A | DC Power, $6-43$ | |--------------------------------|---| | A | Main Board 12 V, 6–42 | | Accessories, 4–19 | Power-Up, 6–38 | | Optional, 4–19 | Range Check, 6–41 | | Standard, 4–19 | Voltage Checks, 6–38
Pulse Amplitude, 6–27 | | accessories, standard, 4–19 | ÷ | | Altitude Spec, 3–3 | Pulser/Sampler Voltages, 6–49 | | | Sampling Efficiency, 6–51 | | _ | Timebase Compensation, 6–37 | | В | Visual Inspection, 6–38 | | | General, 6–1 | | Battery (see Power), 1–2 | Performance Check, 6–1 | | Battery Pack Spec, 3–2 | Aberrations, 6–23 | | BNC Connector, 4–19 | Auto Pulse Select, 6–20 | | Bridge, 4–3 | Chart Recorder, 6–30 | | | Display Module, 6–2 | | | EL Backlight, 6–3 | | C | LCD, 6-2 | | C 11 | Equipment Required, 6–1 | | Cable | Front Panel, 6–4 | | Length vs. Pulse, 1–14 | Menu Access, 6–4 | | Open, 1–15 | Presets, 6–4 Pushbutton Switches, 6–5 | | Short, 1–14 | Rotating Controls, 6–5 | | Test Procedure, 1–13 | Thermistor, 6–7 | | Distance to Fault, 1–13 | Getting Ready, 6–1 | | Horizontal Set Reference, 1–22 | Horizontal Scale, 6–8 | | Reflection Coefficient, 1–17 | Impedance, 6–14 | | Return Loss, 1–16 | Jitter, 6–21 | | Store Waveform, 1–19 | Metric Default, 6–31 | | Vertical Set Reference, 1–24 | Metric Instruments, 6–1 | | View Difference, 1–19 | Noise, 6–12 | | View Input, 1–18 | Offset, 6–10 | | View Store, 1–19 | Offset/Gain, 6–14 | | Cable Connection Spec, 3–2 | Pulse Balance, 6–16 | | Cable Types, 1–12 | Pulse Width, 6–17 | | Calibration | RAM/ROM, 6–15 | | Adjustment Procedure, 6–37 | | | 1st Blow-by Compensation, 6–54 | Timebase, 6–8 | | Equipment Required, 6–37 | Vertical Position, 6–10 | | Ethernet Adjustments, 6–58 | Carrier, 4–3, 4–9 | | Ethernet Checks, 6–31 | Characteristics | | Carrier Offset Voltage, 6–33 | Electrical, 3–1 | | Collision Offset Volatge, 6–34 | Ethernet, 4–16 | | DC Impedance, 6–35 | Environmental, 3–3 | | Equipment Required, 6–31 | Physical, 3–4 | | Equipment Setup, 6–31 | Cheapernet, 4–1 | | LCD, 6–46 | Checks (see Performance Checks), 2– | | Metric Instruments, 6–37 | Circuit Description | | Output Impedance, 6–56 | Display Module | | Power Supply, 6–38 | Block Diagram, 5–29 | | Charging Current, 6–45 | | | Column Driver, 5–34 | DC-to-DC Converter, 5–7 | |---|---| | Block Diagram, 5–32 | Deep Discharge Protection, 5–6 | | Timing Diagram, 5–35 | General, 5–4 | | Column Driver Interface, 5–37 | Post-Regulator, 5–6 | | Column Drivers, 5–31 | Pre-Regulator, 5–5 | | Controller, 5–37 | Primary Circuit, 5–5 | | CPU and Display Memory Timing Diagram, 5–39 | Processor, Block Diagram, 5–8 | | CPU Interface, 5–38 | Processor System | | EL Backlight, 5–40 | Address Decoding, 5–9 | | General, 5–29 | Decoding, 5–10 | | ITO Heater, 5–40 | Display RAM Space, 5–9 | | LCD Cell, 5–30 | Enable and Select Signal space, 5–9 | | Memory, 5–36 | EPROM, 5–9 | | Memory Interface, 5–38 | | | Row Driver, 5–32 | General, 5–7 | | Block Diagram, 5–31 | Interrupt Logic, 5–10 | | Timing Diagram, 5–33 | Memory, 5–9 | | Row Driver Interface, 5–37 | Microprocessor, 5–8 | | Row Drivers, 5–31 | Non-volatile RAM Space, 5–9 | | Supply Voltages, 5–34 | Program Memory, 5–9 | | SBE Cell, 5–31 | RAM, 5–9 | | Shift Register, 5–36 | Pulse Generator/Sampler, 5–23 | | Front Panel | Block Diagram, 5–23 | | Analog-to-Digital Converter, 5–27 | First Sample Bridge, 5–24 | | Block Diagram, 5–26 | First Sample Gate Strobe Generator, 5–25 | | Display Heater, 5–28 | General, 5–23 | | Display Temperature Compensation, 5–28 | Preamp, 5–24 | | EL Backlight, 5–28 | Pulse Generator, 5–23 | | General, 5–25 | Sampler, 5–24 | | Push Button Switches and Latches, 5–27 | Second Sample Gate Strobe Generator, 5–25 | | Resistive Shaft Encoders, 5–27 | Second Sampler, 5–25 | | Rotary Binary Switches, 5–27 | System Block Diagram, 5–2 | | Switch Multiplexers, 5–27 | Timebase | | Front-End, 5–23 | Analog, 5–20 | | Introduction, 5–1 | Block Diagram, 5–16 | | Option 06 (Ethernet) | Calibration of Delay Diagram, 5–19 | | Blcok Diagram, 5–41 | Control Diagram, 5–17 | | Control Lines, 5–41 | Digital, 5–20 | | General, 5–41 | General, 5–15 | | Load and Diplexer, 5–42 | Time Delay Diagram, 5–18 | | Output Amplifier, 5–42 | Video Processor | | Over-Volatge Sensing, 5–42 | General, 5–13 | | Relay and Driver, 5–42 | Output Scope Waveform, 5–15 | | · | Summing Amplifier, 5–14 | | Option Port Interface | Vertical Position DAC, 5–14 | | Block Diagram, 5–11, 5–13 | Video ADC, 5–15 | | Buffers, 5–12 | Video Amplifier, 5–14 | | General, 5–10 | Waveform Accumulation Diagram, 5–3 | | Output Latch, 5–12 | Collision, 4–3 | | Supply Control, 5–11 | Connectors | | Wiring Configuration, 5–12 | BNC – BNC, 4–19 | | Power Supply | BNC to Alligator, 4–20 | | Battery Charger, 5–6 | | | Block Diagram, 5–4 | BNC to Banana, 4–20 | | BNC to Binding Post, 4–20 BNC to F Type, 4–20 BNC to GR, 4–20 BNC to Hook Tips, 4–20 BNC to N Type, 4–20 BNC to UHF, 4–20 Controls | Termination, 4–9, 4–10 Test Procedure, 4–4 Testing Networks, 4–3 Transceivers, 4–2 Typical System, 4–2 Waveform Signatures, 4–10 What is it?, 4–1 | |--|--| | Cable Connector, 1–6 Distance / Division, 1–6 Front Panel, 1–5, 1–6 Horizontal Position, 1–7 Impedance, 1–6 Menu Button, 1–7 Noise Filter, 1–6 Power, 1–7 Pulse Width, 1–7 Store Button, 1–7 | Features (see Menu), 1–25 Frequency Response Curve, 4–16 Fungus Spec, 3–3 Fuse, 4–19 Fuse (see Power), 1–2 | | Velocity of Propagation, 1–7 Vertical Position, 1–7 Vertical Scale, 1–6 View Difference Button, 1–7 View Input Button, 1–7 View Store Button, 1–7 Cursor Spec, 3–2 | Handling, 1–1 Height Spec, 3–4 Horizontal Scale Spec, 3–2 Horizontal Set Reference, 1–22 Humidity Spec, 3–3 | | D | 1 | | Depth Spec, 3–4 E | Impedance (see also Controls), 1–6
Impedance of Cables, 1–12
Indicators, 1–6
Isolation Network, 4–20 | | Electromagnetic Spec, 3–4 Ethernet Bridge, 4–3 Carrier, 4–9 Collision, 4–9 Custom Tests, 4–9 | L Loss, 1–16 | | Electrical Characteristics, 4–16 Frequency Response Curve, 4–16 Introduction, 4–4 Menu, 4–7 Carrier, 4–7, 4–8 Collision, 4–8 Single Sweep, 4–7 Termination, 4–7 N-Type Female T-Connector, 4–5 N-Type Male T-Connector, 4–5 Repeaters, 4–3 Segments, 4–1 Servers, 4–3 Specifications, 4–16 Taps, 4–3, 4–10 | Maintenance Assembly / Disassembly, (see Removal / Replacement), 7–2 Equipment Required, 7–1 General, 7–1 Metric Default, 7–11 Part Removal / Replacement, 7–2 AC Fuse, 7–2 Battery, 7–6 Case Cover Installaation, 7–19 Control Panel, Watertight Seals, 7–18 Display Module, Removal, 7–10 Ethernet Board, Removal, 7–9 | | Front Panel Assembly, Removal, 7–9 Front Panel Board Removal, 7–10 Removal from Display Module, 7–11 Fuse Holder, Removal, 7–5 Main Board EPROM Replacement, 7–7 Lithium Battery, 7–8 Removing, 7–6 Option 06, Removal, 7–9 Option Port Assembly, Removal, 7–12 Power Cord, Conductor Color Code, 7–6 Power Cord Receptacle, Removal, 7–5 Power Supply Board, Removal, 7–3 Power Transformer, Removal, 7–5 Pulser/Sampler Board, Removal, 7–9 | Option Port, 1–10 Debugging, 1–10 Diagnostic, 1–10 Timing, 1–10 Pulse, 1–26 Setup, 1–8 Acquisition Control, 1–8 Backlight, 1–9 Distance / Division, 1–8 Maximum Hold, 1–8 Pulse, 1–8 Single Sweep, 1–8 Vertical Scale, 1–8 Single Sweep, 1–27
Velocity of Propagation, 1–8 View Stored Waveform, 1–10 | |---|---| | Remove Case, 7–3
Remove EMI Shields, 7–3 | | | Sealing Materials, 7–19 | N | | Voltage Selector, Removal, 7–5 | Noise (see also Controls) 1 6 | | Preventive, 7–1 | Noise (see also Controls), 1–6
Noise Spec, 3–1 | | Cleaning, 7–1 | Noise spee, 5–1 | | Lubrication, 7–2 | | | Recalibration, 7–2 | 0 | | Visual Inspection, 7–2 | • | | Troubleshooting, 7–13 | Open, 1–15 | | Flow Chart, 7–13 | Option Port Cover, 4–19 | | Waveforms, 7–13 | Options, 4–1 | | When All Else Fails, 7–18 | Chart Recorder (04), 4–1 | | Maximum Hold, 1–25 | Chart Recorder (07), 4–17 | | Menu, 1–8, 1–25 | Ethernet (06), 4–1 | | Cables, 1–8 | Metric Default (05), 4–1 | | Diagnostics, 1–9 | Power Cords, 4–18 | | Chart Recorder, 1–10 | Token Ring Adapter (08), 4–17 | | Head Alignment, 1–10 | Token Ring Interface (10), 4–17 | | LCD Chart, 1–10 | USOC (09), 4–17 | | Front Panel, 1–9 | · // | | LCD, 1–9 | _ | | Alignment, 1–9 | Р | | Contrast, 1–9 | | | Drive Test, 1–9 | Performance Checks, 2–1 | | Response Time, 1–9 | Aberrations, 2–6 | | Service, 1–9 | Conclusions, 2–11 | | Impedance, 1–9 | Equipment Required, 2–1 | | Noise, 1–9
Offset / Gain, 1–9 | Horizontal Scale, 2–2 | | RAM / ROM, 1–9 | Impedance, 2–6 | | Sampling Efficiency, 1–9 | Noise, 2–5 | | Timebase, 1–9 | Offset / Gain, 2–6 | | Display Contrast, 1–10 | Sampling Efficiency, 2–6 | | Impedance, 1–8 | Set Up, 2–2 | | Main, 1–8 | Vertical Position, 2–4 | | Maximum Hold, 1–25 | Pouch, 4–19 | | Power | Т | |--|---| | AC Receptacle, 1–1 Battery, Low Indicator, 1–4 | Taps, 4–3, 4–10 | | Battery Pack | Temperature, Low, 1–4 | | Care of, 1–2 | Terminator, 4–3, 4–5, 4–9, 4–10, 4–19 | | Charging, 1–2 | Test Cable, 4–19 | | Cords, 4–18 | Thin Ethernet, 4–1 | | Fuse, 1–1 | ThinWire, 4–1 | | Fuse Rating, 1–2 | Token Ring | | Voltage Rating, 1–2 | Adapter, 4–20 | | Voltage Selector, 1–1 | Interface, 4–20 | | Voltages, 1–1 | Transceivers, 4–2 | | Pulse, 1–14, 1–26 | | | Pulse (see also Controls), 1–7
Pulse Inverter, 4–20 | U | | Pulse Spec, 3–1 | | | 2 also spee, 0 1 | USOC Adapter, 4–20 | | R | V | | Reflection Coefficient, 1–17 | Valuative of Dramagation 1 11 | | Repeaters, 4–3 | Velocity of Propagation, 1–11
Table of Types, 1–11 | | Return Loss, 1–16 | Unknown Vp, 1–12 | | | Velocity of Propagation (See also Controls), 1–7 | | S | Velocity of Propagation Spec, 3–2 | | 3 | Vertical Scale Spec, 3–1 | | Salt Atmosphere Spec, 3–3 | Vertical Set Reference, 1–24 | | Sand and Dust Spec, 3–3 | Vibration Spec, 3–3 | | Scale (see Controls), 1–6 | View Difference, 1–19 | | Segments, 4–1 | View Input, 1–18 | | Servers, 4–3 | View Store, 1–19 | | Service Manual, 4–19 | Voltage (see Power), 1–2 | | Shock Spec, 3–3 | Voltage Spec, 3–2 | | Short, 1–14 | Vp (see Velocity of Propagation), 1–11 | | Single Sweep, 1–27 | | | Slide Rule, 4–19 | W | | Specifications, 3–1 | ** | | Electrical, 3–1 | Water Resistance Spec, 3–3 | | Environmental, 3–3
Physical, 3–4 | Waveform Storage, 1–19 | | Store the Waveform, 1–19 | Weight Spec, 3–4 | | Store die maverenin, 1 17 | |